undertale人物_Undertale人物实力排名分析(欢迎讨论)

Undertale人物实力排名分析

本文章是对Undertale人物实力的讨论,如果你有其他意见,或是认为作者给出的证据不足或错误,欢迎在评论区指正。

首先这个排名不会算上Gaster,Annoying Dog,Player以及Frisk/Chara。Gaster的实力基本都是伪一设;而Annoying Dog与Player的实力没有意义;Frisk/Chara的实力取决于LOVE。另外拥有多个形态的怪物会计算综合实力。

1.Asgore

作为怪物国王,Asgore的实力无疑是全游戏最强(别着急反驳,看第二条),而且他在战斗中绝对没有使出全部实力,所以Asgore肯定是最强的。

2.Asriel/Flowey

注意!!!Omega Flowey和Asriel Dreemurr之所以强是因为吸收了六(七)魂,而那些灵魂的力量是不能算在他们的实力中的。Flowey曾说过,Sans让他读了很多次档但Flowey还是打败了Sans因此Flowey用了读档能力还是比Sans强的。而中立线中Flowey曾说过没有你他永远都不能击败Asgore,因此Flowey即使会读档也没有Asgore强。

3.Sans

首先我不是Sans吹,Sans绝对不是最强但Sans不弱。不论Sans的帧伤KR是否只针对LOVE高的玩家,Sans的重力控制,闪避以及时间停止(Sans曾在Grillby's中询问你是否知道Flowey的事,就用过时间停止)这些能力就让Sans成为非常强的人物(不要只看攻防数据),并且能让Flowey读那么多次档,所以Sans绝对不弱。

4.Undyne

Undyne是皇家卫队队长,因此她肯定非常擅长战斗,并且拥有决心,能在屠杀路线变为决心形态,展现出超强的战斗力。

5.Mettaton

Mettaton虽然只是明星,但Mettaton会在屠杀路线告诉你一开始Mettaton是用于战斗的。Mettaton的铁盒子形态防御超高,NEO形态攻击已经超过Asgore,EX形态介于中间。是非常强大的角色。

6.Toriel

Toriel在数据检查里有着和Asgore一样的攻防,但那并不是真实数据。虽然Toriel也没有在战斗中展现全部实力,但是Toriel毕竟只是王后,并没有训练或是有特殊能力。虽然如此,Toriel依然有着很强的实力。

7.Papyrus

同样地,Papyrus也没有在战斗中用出全部实力。Undyne提到过Papyrus很强,但是相比于前面的人物,Papyrus的综合实力还是弱了一些。

至于其他人物的实力就没那么重要了,本篇文章就到这里!欢迎讨论!

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图功能关系图;②设计阶段,生成系统架构图数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例测试报告图表,直观展示测试结果。 阅读建议:在学习使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表代码,熟悉两者的交互方式使用技巧,充分利用官方文档社区资源解决遇到的问题,逐步提高图表绘制代码编写的准确性效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值