【BZOJ】1143: [CTSC2008]祭祀river

【题意】求DAG上最多的点使得互不可达。

【算法】floyd+最大匹配

【题解】

链是DAG上的一个点集,集合内的点相互单向可达。

反链是DAG上的一个点集,集合内的点相互不可达。

题目显然是求最长反链,转化为最小链覆盖。

最小链覆盖只要求可达,最小路径覆盖却要求相连。

所以floyd传递闭包(用floyd解决01可达信息称为传递闭包),然后最小路径覆盖ans=n-最大匹配。

二分图记得开双倍点。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=210,inf=0x3f3f3f3f;
bool map[maxn][maxn];
int tot=1,n,m,first[maxn],S,T,d[maxn],cur[maxn];//最小路径覆盖要开两倍点! 
struct edge{int v,flow,from;}e[maxn*maxn*3];
void floyd(){
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                map[i][j]=map[i][j]||(map[i][k]&map[k][j]);
}
void insert(int u,int v,int w)
{tot++;e[tot].v=v;e[tot].flow=w;e[tot].from=first[u];first[u]=tot;
 tot++;e[tot].v=u;e[tot].flow=0;e[tot].from=first[v];first[v]=tot;}
queue<int>q;
bool bfs(){
    q.push(S);
    memset(d,-1,sizeof(d));
    d[S]=0;
    while(!q.empty()){
        int x=q.front();q.pop();
        for(int i=first[x];i;i=e[i].from)
        if(e[i].flow&&d[e[i].v]==-1){
            d[e[i].v]=d[x]+1;
            q.push(e[i].v);
        }
    }
    return d[T]!=-1;
}
int dinic(int x,int a){
    if(x==T||a==0)return a;
    int f,flow=0;
    for(int& i=cur[x];i;i=e[i].from)
    if(d[e[i].v]==d[x]+1&&e[i].flow&&(f=dinic(e[i].v,min(a,e[i].flow)))>0){
        e[i].flow-=f;
        e[i^1].flow+=f;
        flow+=f;
        a-=f;
        if(a==0)break;//...
    }
    return flow;
}    
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        map[u][v]=1;
    }
    for(int i=1;i<=n;i++)map[i][i]=0;
    floyd();
    S=0;T=2*n+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(map[i][j])insert(i,j+n,1);
    for(int i=1;i<=n;i++){insert(S,i,1);insert(i+n,T,1);}
    int ans=n;
    while(bfs()){
        for(int i=S;i<=T;i++)cur[i]=first[i];
        ans-=dinic(S,inf);
    }
    printf("%d",ans);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/onioncyc/p/7351220.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值