k8s mysql 弹性_k8s 弹性伸缩,基于prometheus自定义指标

本文介绍了如何在K8s环境中,利用Prometheus自定义指标实现基于QPS的弹性伸缩。首先部署了一个允许被Prometheus采集数据的应用,然后安装并配置了Prometheus Adapter,将Prometheus的metrics转换为K8s API兼容的格式。接着创建了Horizontal Pod Autoscaler (HPA)策略,设定QPS阈值以触发扩容。最后通过压测验证了基于自定义指标的扩容功能。
摘要由CSDN通过智能技术生成

简介

上一批文章写了,基于CPU指标的弹性伸缩,资源指标只包含CPU、内存,一般来说也够了。但如果想根据自定义指标:如请求qps/5xx错误数来实现HPA,就需要使用自定义指标了,目前比较成熟的实现是 Prometheus Custom Metrics。自定义指标由Prometheus来提供,再利用k8s-prometheus-adpater聚合到apiserver,实现和核心指标(metric-server)同样的效果。

2440b22c1178fd5bfa9f405105d9df06.png

下面我们就来演示基于prometheus监控自定义指标实现k8s pod基于qps的弹性伸缩

这里已经部署好prometheus环境

准备扩容应用

部署一个应用,且应用需要允许被prometheus采集数据

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

app: metrics-app

name: metrics-app

spec:

replicas: 3

selector:

matchLabels:

app: metrics-app

template:

metadata:

labels:

app: metrics-app

annotations:

prometheus.io/scrape: "true"# 设置允许被prometheus采集

prometheus.io/port: "80"# prometheus 采集的端口

prometheus.io/path: "/metrics"# prometheus 采集的路径

spec:

containers:

- image: metrics-app

name: metrics-app

ports:

- name: web

containerPort: 80

resources:

requests:

cpu: 200m

memory: 256Mi

readinessProbe:

httpGet:

path: /

port: 80

initialDelaySeconds: 3

periodSeconds: 5

livenessProbe:

httpGet:

path: /

port: 80

initialDelaySeconds: 3

periodSeconds: 5

---

apiVersion: v1

kind: Service

metadata:

name: metrics-app

labels:

app: metrics-app

spec:

ports:

- name: web

port: 80

targetPort: 80

selector:

app: metrics-app

应用部署之后,通过prometheus web端验证是否已经自动发现

5e13fccd2e3af69a3f19dab84b62e393.png

验证指标能否正常采集

7f3411f027bd9b4921978f6ba937b15b.png

这样我们部署的扩容应用就准备完成了,接下来的内容就是HPA如何获取其qps进行扩容的配置了

部署 Custom Metrics Adapter

prometheus采集到的metrics并不能直接给k8s用,因为两者数据格式不兼容,还需要另外一个组件(k8s-prometheus-adpater),将prometheus的metrics 数据格式转换成k8s API接口能识别的格式,转换以后,因为是自定义API,所以还需要用Kubernetes aggregator在主APIServer中注册,以便直接通过/apis/来访问。

prometheus-adapter GitHub地址:https://github.com/DirectXMan12/k8s-prometheus-adapter

该 PrometheusAdapter 有一个稳定的Helm Charts,我们直接使用,这里使用helm 3.0版本,使用微软云的镜像

先准备下helm环境(如已有可忽略):

wget https://get.helm.sh/helm-v3.0.0-linux-amd64.tar.gz

tar zxvf helm-v3.0.0-linux-amd64.tar.gz

mv linux-amd64/helm /usr/bin/

helm repo add stable http://mirror.azure.cn/kubernetes/charts

helm repo update

helm repo list

部署prometheus-adapter,指定prometheus地址:

# helm install prometheus-adapter stable/prometheus-adapter --namespace kube-system --set prometheus.url=http://prometheus.kube-system,prometheus.port=9090

# helm list -n kube-system

验证部署成功

# kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE

prometheus-adapter-86574f7ff4-t9px4 1/1 Running 0 65s

确保适配器注册到APIServer:

# kubectl get apiservices |grep custom

# kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1"

创建HPA策略

我们配置的扩容规则策略为每秒QPS超过0.8个就进行扩容

[root@k8s-master-02 ~]# cat app-hpa-v2.yml

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: metrics-app-hpa

namespace: default

spec:

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: metrics-app

minReplicas: 1

maxReplicas: 10

metrics:

- type: Pods

pods:

metric:

name: http_requests_per_second

target:

type: AverageValue

averageValue: 800m# 800m 即0.8个/秒,如果是阀值设置为每秒10个,这里的值就应该填写10000m

[root@k8s-master-02 ~]# kubectl apply -f app-hpa-v2.yml

配置prometheus自定义指标

当创建好HPA还没数据,因为适配器还不知道你要什么指标(http_requests_per_second),HPA也就获取不到Pod提供指标,接下来我们就要解决监控值没有正常获取的问题,即配置自定义指标

[root@k8s-master-02 ~]# kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

metrics-app-hpa Deployment/metrics-app /800m 1 10 3 36s

ConfigMap在default名称空间中编辑prometheus-adapter ,并seriesQuery在该rules: 部分的顶部添加一个新的配置:(获取该服务的所有pod 2分钟之内的http_requests监控值并计算平均值,然后相加对外提供数据)

[root@k8s-master-02 ~]# kubectl edit cm prometheus-adapter -n kube-system

apiVersion: v1

data:

config.yaml: |

rules:

- seriesQuery: 'http_requests_total{kubernetes_namespace!="",kubernetes_pod_name!=""}'

resources:

overrides:

kubernetes_namespace: {resource: "namespace"}

kubernetes_pod_name: {resource: "pod"}

name:

matches: "^(.*)_total"

as: "${1}_per_second"

metricsQuery: 'sum(rate(<<.series>>{<<.labelmatchers>>}[2m])) by (<<.groupby>>)'

……

配置好之后,因为adapter pod不支持配置动态加载,所以我们修改了配置,需要删除一下pod,让他重新加载一个新的生效配置

[root@k8s-master-02 ~]# kubectl delete pod prometheus-adapter-86574f7ff4-t9px4 -n kube-system

删除pod重新生成配置之后,大约一两分钟在观察hpa的值就正常了

[root@k8s-master-02 ~]# kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

metrics-app-hpa Deployment/metrics-app 416m/800m 1 10 2 17m

验证基于自定义指标的扩容

接下来通过压测验证扩容缩容

[root@k8s-master-02 ~]# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.0.0.1 443/TCP 84d

metrics-app ClusterIP 10.0.0.80 80/TCP 3d2h

[root@k8s-master-02 ~]# ab -n 100000 -c 100 http://10.0.0.80/metrics

压测过程中观察hpa和pod状态发现pod已经自动扩容到了10个pod

[root@k8s-master-02 ~]# kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

metrics-app-hpa Deployment/metrics-app 289950m/800m 1 10 10 38m

[root@k8s-master-02 ~]# kubectl get pods

NAME READY STATUS RESTARTS AGE

metrics-app-7674cfb699-2gznv 1/1 Running 0 40s

metrics-app-7674cfb699-2hk6r 1/1 Running 0 40s

metrics-app-7674cfb699-5926q 1/1 Running 0 40s

metrics-app-7674cfb699-5qgg2 1/1 Running 0 2d2h

metrics-app-7674cfb699-9zkk4 1/1 Running 0 25s

metrics-app-7674cfb699-dx8cj 1/1 Running 0 56s

metrics-app-7674cfb699-fmgpp 1/1 Running 0 56s

metrics-app-7674cfb699-k9thm 1/1 Running 0 25s

metrics-app-7674cfb699-wzxhk 1/1 Running 0 2d2h

metrics-app-7674cfb699-zdbtg 1/1 Running 0 40s

停止压测一段时间之后,pod数量就会根据HPA策略自动缩容成1个,说明我们的配置是成功的

喜欢 (0)or分享 (0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值