简介
上一批文章写了,基于CPU指标的弹性伸缩,资源指标只包含CPU、内存,一般来说也够了。但如果想根据自定义指标:如请求qps/5xx错误数来实现HPA,就需要使用自定义指标了,目前比较成熟的实现是 Prometheus Custom Metrics。自定义指标由Prometheus来提供,再利用k8s-prometheus-adpater聚合到apiserver,实现和核心指标(metric-server)同样的效果。
下面我们就来演示基于prometheus监控自定义指标实现k8s pod基于qps的弹性伸缩
这里已经部署好prometheus环境
准备扩容应用
部署一个应用,且应用需要允许被prometheus采集数据
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: metrics-app
name: metrics-app
spec:
replicas: 3
selector:
matchLabels:
app: metrics-app
template:
metadata:
labels:
app: metrics-app
annotations:
prometheus.io/scrape: "true"# 设置允许被prometheus采集
prometheus.io/port: "80"# prometheus 采集的端口
prometheus.io/path: "/metrics"# prometheus 采集的路径
spec:
containers:
- image: metrics-app
name: metrics-app
ports:
- name: web
containerPort: 80
resources:
requests:
cpu: 200m
memory: 256Mi
readinessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 3
periodSeconds: 5
livenessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 3
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: metrics-app
labels:
app: metrics-app
spec:
ports:
- name: web
port: 80
targetPort: 80
selector:
app: metrics-app
应用部署之后,通过prometheus web端验证是否已经自动发现
验证指标能否正常采集
这样我们部署的扩容应用就准备完成了,接下来的内容就是HPA如何获取其qps进行扩容的配置了
部署 Custom Metrics Adapter
prometheus采集到的metrics并不能直接给k8s用,因为两者数据格式不兼容,还需要另外一个组件(k8s-prometheus-adpater),将prometheus的metrics 数据格式转换成k8s API接口能识别的格式,转换以后,因为是自定义API,所以还需要用Kubernetes aggregator在主APIServer中注册,以便直接通过/apis/来访问。
prometheus-adapter GitHub地址:https://github.com/DirectXMan12/k8s-prometheus-adapter
该 PrometheusAdapter 有一个稳定的Helm Charts,我们直接使用,这里使用helm 3.0版本,使用微软云的镜像
先准备下helm环境(如已有可忽略):
wget https://get.helm.sh/helm-v3.0.0-linux-amd64.tar.gz
tar zxvf helm-v3.0.0-linux-amd64.tar.gz
mv linux-amd64/helm /usr/bin/
helm repo add stable http://mirror.azure.cn/kubernetes/charts
helm repo update
helm repo list
部署prometheus-adapter,指定prometheus地址:
# helm install prometheus-adapter stable/prometheus-adapter --namespace kube-system --set prometheus.url=http://prometheus.kube-system,prometheus.port=9090
# helm list -n kube-system
验证部署成功
# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
prometheus-adapter-86574f7ff4-t9px4 1/1 Running 0 65s
确保适配器注册到APIServer:
# kubectl get apiservices |grep custom
# kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1"
创建HPA策略
我们配置的扩容规则策略为每秒QPS超过0.8个就进行扩容
[root@k8s-master-02 ~]# cat app-hpa-v2.yml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: metrics-app-hpa
namespace: default
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: metrics-app
minReplicas: 1
maxReplicas: 10
metrics:
- type: Pods
pods:
metric:
name: http_requests_per_second
target:
type: AverageValue
averageValue: 800m# 800m 即0.8个/秒,如果是阀值设置为每秒10个,这里的值就应该填写10000m
[root@k8s-master-02 ~]# kubectl apply -f app-hpa-v2.yml
配置prometheus自定义指标
当创建好HPA还没数据,因为适配器还不知道你要什么指标(http_requests_per_second),HPA也就获取不到Pod提供指标,接下来我们就要解决监控值没有正常获取的问题,即配置自定义指标
[root@k8s-master-02 ~]# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
metrics-app-hpa Deployment/metrics-app /800m 1 10 3 36s
ConfigMap在default名称空间中编辑prometheus-adapter ,并seriesQuery在该rules: 部分的顶部添加一个新的配置:(获取该服务的所有pod 2分钟之内的http_requests监控值并计算平均值,然后相加对外提供数据)
[root@k8s-master-02 ~]# kubectl edit cm prometheus-adapter -n kube-system
apiVersion: v1
data:
config.yaml: |
rules:
- seriesQuery: 'http_requests_total{kubernetes_namespace!="",kubernetes_pod_name!=""}'
resources:
overrides:
kubernetes_namespace: {resource: "namespace"}
kubernetes_pod_name: {resource: "pod"}
name:
matches: "^(.*)_total"
as: "${1}_per_second"
metricsQuery: 'sum(rate(<<.series>>{<<.labelmatchers>>}[2m])) by (<<.groupby>>)'
……
配置好之后,因为adapter pod不支持配置动态加载,所以我们修改了配置,需要删除一下pod,让他重新加载一个新的生效配置
[root@k8s-master-02 ~]# kubectl delete pod prometheus-adapter-86574f7ff4-t9px4 -n kube-system
删除pod重新生成配置之后,大约一两分钟在观察hpa的值就正常了
[root@k8s-master-02 ~]# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
metrics-app-hpa Deployment/metrics-app 416m/800m 1 10 2 17m
验证基于自定义指标的扩容
接下来通过压测验证扩容缩容
[root@k8s-master-02 ~]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 443/TCP 84d
metrics-app ClusterIP 10.0.0.80 80/TCP 3d2h
[root@k8s-master-02 ~]# ab -n 100000 -c 100 http://10.0.0.80/metrics
压测过程中观察hpa和pod状态发现pod已经自动扩容到了10个pod
[root@k8s-master-02 ~]# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
metrics-app-hpa Deployment/metrics-app 289950m/800m 1 10 10 38m
[root@k8s-master-02 ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
metrics-app-7674cfb699-2gznv 1/1 Running 0 40s
metrics-app-7674cfb699-2hk6r 1/1 Running 0 40s
metrics-app-7674cfb699-5926q 1/1 Running 0 40s
metrics-app-7674cfb699-5qgg2 1/1 Running 0 2d2h
metrics-app-7674cfb699-9zkk4 1/1 Running 0 25s
metrics-app-7674cfb699-dx8cj 1/1 Running 0 56s
metrics-app-7674cfb699-fmgpp 1/1 Running 0 56s
metrics-app-7674cfb699-k9thm 1/1 Running 0 25s
metrics-app-7674cfb699-wzxhk 1/1 Running 0 2d2h
metrics-app-7674cfb699-zdbtg 1/1 Running 0 40s
停止压测一段时间之后,pod数量就会根据HPA策略自动缩容成1个,说明我们的配置是成功的
喜欢 (0)or分享 (0)