题意:
一只母老鼠想要找到她的玩具,而玩具就丢在一个广阔的3维空间上某个点,而母老鼠在另一个点,她可以直接走到达玩具的位置,但是耗时是所走过的欧几里得距离*10s。还有一种方法,就是靠钻洞,洞是球形的,在洞内怎么走都是不耗时间的。求母老鼠找到她的玩具所耗时?
分析:
洞到洞的最短距离都是圆心距离减去半径。剩下的就是求单源最短路径。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
const int maxn=102;
int x[maxn],y[maxn],z[maxn],r[maxn];
double g[maxn][maxn];
int vis[maxn];
double d[maxn];
double INF = 1e9;
ll ping(ll x)
{
return x*x;
}
double dist(int i,int j)
{
return sqrt(ping(x[i]-x[j])+ping(y[i]-y[j])+ping(z[i]-z[j]))-r[i]-r[j];
}
double dijkstra(int n)
{
for(int i=1;i<n;i++)
d[i]=INF;
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
int x;
double m = INF;
for(int y=0;y<n;y++)
if(!vis[y]&&d[y]<m)
m=d[x=y];
if(x==n-1)
return d[n-1];
vis[x]=1;
for(int y=0;y<n;y++)
d[y]=min(d[y],d[x]+g[x][y]);
}
return INF;
}
int main()
{
int n,cas=0;
while(scanf("%d",&n)&&n>=0)
{
memset(r,0,sizeof(r));
int i,j;
for(i=1;i<=n;i++)
scanf("%d%d%d%d",&x[i],&y[i],&z[i],&r[i]);
scanf("%d%d%d",&x[0],&y[0],&z[0]);
scanf("%d%d%d",&x[n+1],&y[n+1],&z[n+1]);
//<<1<<endl;
for(i=0;i<=n+1;i++)
{
for(j=i+1;j<=n+1;j++)
{
g[i][j]=max(0.0,dist(i,j));
g[j][i]=g[i][j];
}
}
printf("Cheese %d: Travel time = %.0lf sec\n",++cas,dijkstra(n+2)*10);
}
}