积分变限函数
1. 什么是积分变限函数?
所谓“积分变限函数”就是用定积分定义的函数,其中自变量出现在积分的上限或下限。
在讲牛顿-莱布尼茨定理时,我们用定积分对一个连续函数 f(x) 函数,定义了一个这样的函数:
由于这个函数的自变量 x 在积分上限,我们称这样的函数为“积分上限函数”。在微积分里证明了:这个积分上限函数是 f(x) 的原函数,或者说,f(x) 是这个积分上限函数的导数。这个结论直接导致了微积分基本定理:牛顿-莱布尼茨公式。
当然,变量也可能出现在积分下限,甚至上限和下限都可以含有自变量,我们把这类函数统称为“积分变限函数”。
积分变限函数与以前所接触到的所有函数形式都很不一样。首先,它是由定积分来定义的;其次,这个函数的自变量出现在积分上限或下限。因此,这种函数给人一种新鲜感、神秘感。一些同学甚至对这种函数形式感到很茫然。
2. 为什么函数要用定积分来表示?哪些函数要用积分来表示?有的人觉得奇怪,为什么有的函数要表示成积分的形式?其实,并不是数学家们故弄玄虚,故意要把函数写成这种复杂的形式来为难我们,这实在是不得已而为之的事情。因为有很多函数(有不少还是重要的函数)没有办法写成我们喜欢的初等函数的形式(有限的形式),它们只能用这种积分的形式来表示。
例如,概率积分(也叫误差函数)