🏆🏆欢迎大家来到我们的天空🏆🏆
🏆🏆如果文章内容对您有所触动,别忘了点赞、关注,收藏!
🏆 作者简介:我们的天空
🏆《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。
🏆《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。所属的专栏:TensorFlow项目开发实战,人工智能技术
🏆🏆主页:我们的天空
AI编程工具的选择和使用对于构建高效的机器学习和深度学习系统至关重要。这些工具涵盖了从数据处理、模型训练、模型优化到模型部署的各个环节。下面是一个全面的AI编程工具合集,按功能分类列出了一些常用的工具,并提供了简要介绍和应用场景。
一、编程语言与库
1. Python
- NumPy: 提供高性能的多维数组对象和用于操作数组的工具。
- Pandas: 用于数据分析和数据处理的强大库。
- SciPy: 用于科学计算的库,提供了大量科学计算中常用的算法。
- Matplotlib: 用于绘制图表的库。
- Scikit-Learn: 用于经典机器学习算法的库。
- TensorFlow: Google开发的深度学习框架。
- PyTorch: Facebook开发的深度学习框架。
- Keras: 构建神经网络的高级API,可以在TensorFlow之上运行。
- PyTorch Lightning: 基于PyTorch的轻量级深度学习研究平台。
- Hugging Face Transformers: 提供预训练模型的库,如BERT、GPT-3等。
2. R
- tidyverse: 包括一系列数据处理和可视化的包。
- keras: Keras的R接口。
- tensorflow