取得64位的密钥,每个第8位作为奇偶校验位。 1-2、变换密钥 1-2-1、舍弃64位密钥中的奇偶校验位,根据下表(pc-1)进行密钥变换得到56位的密钥,在变换中,奇偶校验位以被舍弃。 permuted choice 1 (pc-1) 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 1-2-2、将变换后的密钥分为两个部分,开始的28位称为c[0],最后的28位称为d[0]。 1-2-3、生成16个子密钥,初始i=1。 1-2-3-1、同时将c[i]、d[i]左移1位或2位,根据i值决定左移的位数。见下表 i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 左移位数: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1-2-3-2、将c[i]d[i]作为一个整体按下表(pc-2)变换,得到48位的k[i] permuted choice 2 (pc-2) 14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4 26 8 16 7 27 20 13 2 41 52 31 37 47 55 30 40 51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32 1-2-3-3、从1-2-3-1处循环执行,直到k[16]被计算完成。 2、处理64位的数据 2-1、取得64位的数据,如果数据长度不足64位,应该将其扩展为64位(例如补零) 2-2、将64位数据按下表变换(ip) initial permutation (ip) 58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4 62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8 57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3 61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7 2-3、将变换后的数据分为两部分,开始的32位称为l[0],最后的32位称为r[0] 2-4、用16个子密钥加密数据,初始i=1 2-4-1、将32位的r[i-1]按下表(e)扩展为48位的e[i-1] expansion (e) 32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11 12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21 22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1 2-4-2、异或e[i-1]和k[i],即e[i-1] xor k[i] 2-4-3、将异或后的结果分为8个6位长的部分,第1位到第6位称为b[1],第7位到第12位称为b[2],依此类推,第43位到第48位称为b[8]。 2-4-4、按s表变换所有的b[j],初始j=1。所有在s表的值都被当作4位长度处理。 2-4-4-1、将b[j]的第1位和第6位组合为一个2位长度的变量m,m作为在s[j]中的行号。 2-4-4-2、将b[j]的第2位到第5位组合,作为一个4位长度的变量n,n作为在s[j]中的列号。 2-4-4-3、用s[j][m][n]来取代b[j]。 substitution box 1 (s[1]) 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 s[2] 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 s[3] 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 s[4] 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 s[5] 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 s[6] 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13 s[7] 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 s[8] 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 2-4-4-4、从2-4-4-1处循环执行,直到b[8]被替代完成。 2-4-4-5、将b[1]到b[8]组合,按下表(p)变换,得到p。 permutation p 16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10 2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25 2-4-6、异或p和l[i-1]结果放在r[i],即r[i]=p xor l[i-1]。 2-4-7、l[i]=r[i-1] 2-4-8、从2-4-1处开始循环执行,直到k[16]被变换完成。 2-4-5、组合变换后的r[16]l[16](注意:r作为开始的32位),按下表(ip-1)变换得到最后的结果。 final permutation (ip**-1) 40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31 38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27 34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25 以上就是des算法的描述。 原 文:matthew fischer 翻 译:小榕软件实验室 责 任 编辑:richardlee | |
转载于:https://blog.51cto.com/richardlee/5742