随机过程可以作为离散时间信号的模型。
通常,一个随机过程是一族带有序号的随机变量:
..., x[-2], x[-1], x[0], x[1], x[2], ...
上面的每一个x[i]都是一个随机变量,可以分别具有不同的概率分布(连续的或离散的)。
这样,x的均值是时间的函数;自相关是一个二维序列(和起点以及时间差都有关)。
然而,对于平稳过程,我们有:
p(xn+k,n+k,xm+k,m+k)=p(xn,n,xm,m)
即x[n]和x[m]的联合分布只和m和n之间的差有关。
当m=n时,上式成为p(xn+k,n+k)=p(xn,n)
也就是说,一个平稳过程的概率密度函数PDF在任意时间点n都是相同的(time independent)。
于是,平稳过程的集合平均E[xn]是一个常数,自相关只与时间差有关。
反过来说,如果一个随机过程的均值/方差为常数,自相关只与时间差有关,我们未必能确定其概率分布是否时不变;但我们仍称其为广义平稳的。
在实用上,我们只能得到有限个有限长的序列。直觉上,对于平稳过程,单个序列很长一段的幅值分布近似等于单一概率密度:
时间平均