随机信号的傅里叶分析

本文探讨了随机过程的概念,特别是平稳过程的特性,指出其概率密度函数在任意时间点是相同的。介绍了功率谱密度的定义及其在随机信号分析中的重要性,包括如何通过周期图法进行估计。同时,讨论了线性时不变系统对随机信号的影响,揭示了输入输出互相关与单位脉冲响应的关系。
摘要由CSDN通过智能技术生成

随机过程可以作为离散时间信号的模型。

通常,一个随机过程是一族带有序号的随机变量:

..., x[-2], x[-1], x[0], x[1], x[2], ...

上面的每一个x[i]都是一个随机变量,可以分别具有不同的概率分布(连续的或离散的)。

这样,x的均值是时间的函数;自相关是一个二维序列(和起点以及时间差都有关)。

然而,对于平稳过程,我们有:

p(xn+k,n+k,xm+k,m+k)=p(xn,n,xm,m)

即x[n]和x[m]的联合分布只和m和n之间的差有关。

当m=n时,上式成为p(xn+k,n+k)=p(xn,n)

也就是说,一个平稳过程的概率密度函数PDF在任意时间点n都是相同的(time independent)。

于是,平稳过程的集合平均E[xn]是一个常数,自相关只与时间差有关。

反过来说,如果一个随机过程的均值/方差为常数,自相关只与时间差有关,我们未必能确定其概率分布是否时不变;但我们仍称其为广义平稳的。

 

在实用上,我们只能得到有限个有限长的序列。直觉上,对于平稳过程,单个序列很长一段的幅值分布近似等于单一概率密度:

时间平均

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值