在这篇文章中,我将对多元线性回归做同样的事情。我将得出阻塞的Gibbs采样器所需的条件后验分布。然后我将对采样器进行编码并使用模拟数据对其进行测试。
一个贝叶斯模型
假设我们有一个样本大小的
到目前为止,这与频率设置中看到的多元正态回归相同。假设
通过为
我们假设超级参数是简单的。
联合后验分布
关节后验分布与...成正比
我们可以这样写,因为我们假设事先独立。那是,
替换分布,
block吉布斯采样器
在对采样器进行编码之前,我们需要导出Gibbs采样器的组件 - 每个参数的后验条件分布。
条件后验
条件后验
这是一个非常漂亮和直观的结果。因为我们在参数向量上使用平坦先验,所以参数向量的条件后验以最大似然估计为中心
还要注意,条件后验是一个多变量分布,因为它
模拟
我模拟了一个
运行阻塞的Gibbs采样器(block_gibbs()函数)会生成真实系数和方差参数的估计值。运行了500,000次迭代。老化期为100,000,修剪10次迭代。
下面是MCMC链的图,其中真实值用红线表示。
以下是应用老化和修剪后参数的后验分布:
似乎我们能够对这些参数进行合理的后验估计。分布并不完全以事实为中心,因为我们的数据集只是事实的一个实现。为了确保贝叶斯估计器正常工作,我重复这个练习1000个模拟数据集。
这将产生1,000套后验平均值和1,000套95%可信区间。平均而言,这1000个后方手段应以真相为中心。平均而言,真实参数值应该在95%的时间内在可信区间内。
以下是这些评估的摘要。
“Estimator Means”列是所有1,000个模拟的平均后验平均值。非常好。百分比偏差均小于5%。所有参数的95%CI覆盖率约为95%。
扩展
我们可以对此模型进行许多扩展。例如,可以使用除Normal之外的其他分布以适应不同类型的结果。例如,如果我们有二进制数据,我们可以将其建模为:
然后预先分配
在本文中概述的线性情况下,可以更灵活地对协方差矩阵进行建模。相反,假设协方差矩阵是具有单个共同方差的对角线。这是多元线性回归中的同方差性假设。如果数据是聚类的(例如,每个受试者多次观察),我们可以使用逆Wishart分布来模拟整个协方差矩阵。
还有问题吗?联系我们!
大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服)
【服务场景】
科研项目; 公司项目外包;线上线下一对一培训;数据采集;学术研究;报告撰写;市场调查。
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询服务