这题跟HDU3333差不多吧。
离线的做法很简单,不再说了
以前做过。
主席树的做法就比较暴力了。。
什么是主席树呢。。
其实是某种称号。
在该题中的体现是可持久化的线段树。
对于一个数
如果以前没出现过
就插入到主席树中
否则就删除以前那个。
再插入主席树。
注意,所有的更新和删除都是建立了新的节点来保持其历史状态的。。
对于T[i]我们存的是从1到i区间的不同的数出现了多少个。
然后这棵树是根据T[i - 1]来建立的。
代码如下。。第一次写主席树。 几乎是照着爱将的代码写的。
不过他是倒着来插入的,我是正向来的。 无非是一个以左端点为根查询。一个以询问的右端点为根查询,
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <map>
#include <vector>
#include <algorithm>
#define INF 111111111
#define MAXN 33333
#define MAXM 600005
using namespace std;
int n, tot, q, a[MAXN];
int T[MAXM], lson[MAXM], rson[MAXM], val[MAXM];
int nxt[MAXN], b[MAXN];
int build(int l, int r)
{
int rt = tot++;
val[rt] = 0;
int m = (l + r) >> 1;
if(l != r)
{
lson[rt] = build(l, m);
rson[rt] = build(m + 1, r);
}
return rt;
}
int update(int rt, int pos, int v)
{
int newrt = tot++, tmp = newrt;
int l = 1, r = n;
val[newrt] = val[rt] + v;
while(l < r)
{
int m = (l + r) >> 1;
if(pos <= m)
{
lson[newrt] = tot++;
rson[newrt] = rson[rt];
newrt = lson[newrt];
rt = lson[rt];
r = m;
}
else
{
rson[newrt] = tot++;
lson[newrt] = lson[rt];
newrt = rson[newrt];
rt = rson[rt];
l = m + 1;
}
val[newrt] = val[rt] + v;
}
return tmp;
}
int query(int rt, int pos)
{
int ret = 0;
int l = 1, r = n;
while(pos > l)
{
int m = (l + r) >> 1;
if(pos <= m)
{
ret += val[rson[rt]];
rt = lson[rt];
r = m;
}
else
{
l = m + 1;
rt = rson[rt];
}
}
return ret + val[rt];
}
int main()
{
while(scanf("%d", &n) != EOF)
{
tot = 0;
memset(nxt, -1, sizeof(nxt));
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
b[i - 1] = a[i];
}
sort(b, b + n);
int cnt = unique(b, b + n) - b;
T[0] = build(1, n);
for(int i = 1; i <= n; i++)
{
int id = lower_bound(b, b + cnt, a[i]) - b;
if(nxt[id] == -1)
T[i] = update(T[i - 1], i, 1);
else
{
int t = update(T[i - 1], nxt[id], -1);
T[i] = update(t, i, 1);
}
nxt[id] = i;
}
scanf("%d", &q);
while(q--)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", query(T[r], l));
}
}
return 0;
}