1.为何概率图模型在人工智能中失宠?
因为(1)不固定维数(2)强假设
2. 1980s开始被接受的原因?
Probabilistic Reasoning in Intelligent Systems
避免了强假设
3. 贝叶斯链式法则
p(x1,x2,..,xn)=p(x1)p(x2|x1)p(x3|x1,x2),...
4 联合概率的表达(贝叶斯网络)
所以随机变量相互独立---->现实中随机变量不总是相互独立---->条件概率参数化
相互独立的--naive Bayes--更加一般的图(贝叶斯分解)
选择变量(有时必要加隐变量),不需考虑不关键的变量
选择结构: backward construction process (回溯法?从结果分析原因,加到parent nodes上),要考虑弱相关,但是不能全考虑,否则模型太臃肿了
选择概率:
5 有效迹(active trail)和d分离:例子
6 I-MAP 等价