【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)

题目链接
题意:求\(\sum_{i=1}^{n}\gcd(i,n)\)

首先可以肯定,\(\gcd(i,n)|n\)

所以设\(t(x)\)表示\(gcd(i,n)=x\)\(i\)的个数。

那么答案很显然就是\(\sum_{d|n}t(d)*d\)

那么\(t(x)\)怎么求呢。

\[t(x)=\sum_{i=1}^{n}[\gcd(i,n)=x]\]
因为若\(\gcd(x,y)=1\),则有\(\gcd(xk,yk)=k\)
所以
\[t(x)=\sum_{i=1}^{n}[\gcd(i,n)=x]=\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}[\gcd(i,\lfloor\frac{n}{x}\rfloor)=1]=\phi(\lfloor\frac{n}{x}\rfloor)\]
所以最终答案就是\(\sum_{d|n}[\phi(\lfloor\frac{n}{d}\rfloor)*d]\)

我们可以在\(O(\sqrt n)\)的时间复杂度内求出\(n\)的所有约数,约数个数是\(\log n\)级别的,求\(\phi\)\(O(\sqrt n)\)的时间复杂度,所以总时间复杂度\(O(\log n\sqrt n)\)

#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
ll n;
ll phi(ll x){
    int s = sqrt(x); ll ans = x;
    for(int i = 2; i <= s && x != 1; ++i)
       if(!(x % i)){
         ans = ans / i * (i - 1);
         while(!(x % i))
           x /= i;
       }
    if(x != 1) ans = ans / x * (x - 1);
    return ans;
}
int main(){
    scanf("%lld", &n);
    int i; ll ans = 0;
    for(i = 1; (ll)i * i < n; ++i)
       if(!(n % i))
         ans += phi(n / i) * i + (n / i) * phi(i);
    if(i * i == n) ans += phi(i) * i;
    printf("%lld\n", ans);
    return 0;
} 

转载于:https://www.cnblogs.com/Qihoo360/p/9777286.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值