【题解】洛谷P2303(bzoj2705)[SDOI2012]Longge的问题 欧拉函数

29 篇文章 0 订阅
24 篇文章 0 订阅

题目链接

题目背景

SDOi2012

题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数 N N N,你需要求出 ∑ i = 1 N gcd ⁡ ( i , N ) \sum_{i=1}^N\gcd(i, N) i=1Ngcd(i,N)

输入输出格式

###输入格式:
一个整数,为 N N N

输出格式:

一个整数,为所求的答案。

输入输出样例

输入样例#1:

6

输出样例#1:

15

说明

对于 60 % 60\% 60%的数据, 0 &lt; N ≤ 2 16 0&lt;N\le 2^{16} 0<N216

对于 100 % 100\% 100%的数据, 0 &lt; N ≤ 2 32 0&lt;N\le 2^{32} 0<N232


在这里插入图片描述

#include<cstdio>
typedef long long ll;
ll n,ans;
ll euler(ll num)
{
	ll ret=num;
	for(ll i=2;i*i<=num;i++)
	{
		if(num%i==0)ret=ret*(i-1)/i;
		while(num%i==0)num/=i;
	}
	if(num>1)ret=ret*(num-1)/num;
	return ret;
}
int main()
{
	scanf("%lld",&n);
	ll i;
	for(i=1;i*i<=n;i++)
	    if(n%i==0)ans+=euler(i)*n/i+euler(n/i)*i;
	if((i-1)*(i-1)==n)ans-=(i-1)*euler(n/(i-1));//漏掉了 
	printf("%lld\n",ans);
	return 0;
}

总结

欧拉函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值