本发明专利技术公开了一种基于知识图谱的大学计算机基础习题推荐方法,基于大学计算机基础知识点构建的知识图谱,使用图团体检测算法从知识点之间的关系结构上分析知识点间的关联性,从而推荐与学生错误知识点关联性较高的知识点给学生进行学习;通过中文分词提取习题语义特征构建word2vec模型,使用RWMD方法计算学生的错题与其他习题在内容上的相似度,选取相似度高的习题进行推荐。通过分析学生的错题为学生推荐相应的知识点和习题,可以帮助学生尽快扫除知识盲点,更好地掌握大学计算机基础这门课,同时也减轻了任课教师的压力。
A method of recommendation of university computer basic exercises based on Knowledge Map
【技术实现步骤摘要】
基于知识图谱的大学计算机基础习题推荐方法
本专利技术属于人工智能领域的一个重要方向,具体涉及一种基于知识图谱的大学计算机基础习题推荐方法。
技术介绍
随着信息技术的发展,互联网信息总量呈现爆炸性增长,同时也伴生了信息的组织结构松散等问题。传统的信息检索方式已经难以适应现状,知识图谱以其强大的语义处理能力与开放互连能力为解决这些问题提供了新的思路。大学计算机基础对于当代大学生是一门非常重要的基础课。这门课程包含计算机的起源与发展、硬件组成、操作系统、计算机网络、算法与数据结构、常用的办公软件操作等内容。通过学习大学计算机基础,学生对计算机可以有一个全面清楚的认识。由于大学计算机基础这门课程知识覆盖面广、知识点繁杂,学生在复习的时候短时间内难以入手。同时大学计算机基础作为一门公共基础课,每一个班级的学生数量多,任课教师难以通过分析每一个学生的错题从而对其薄弱的知识点进行梳理,以此制定适合该学生的复习方案。并且大多数学生因为自身对知识的掌握度不高,也难以从做错的习题中分析自己的知识盲区。因此形成一套可以自动从学生的错题中分析该学生的知识盲区,从而给学生推荐需要学习的知识点和相应的习题的方法是十分有必要的。目前使用的推荐算法大多为基于内容的推荐,通过计算得到与用户偏好相似度高的内容进行推荐。但是在进行大学计算机基础的知识点与习题推荐时,不仅要考虑习题在内容上的相似性,还需要考虑知识点之间的关联性。因为每一个知识点都不是独立的,是具有相互关系的。本专利技术旨针对此种情况提出了一种新的解决方法。专利技术内容本专利技术旨在提供一种基于知识图谱的大学计算机基础习题推荐方法。利用以大学计算机基础知识点为节点构建的知识图谱,通过分析学生错误的习题得到该学生可能未掌握的知识点以及与错题内容相似的习题推荐给学生,帮助学生扫除知识盲区,解决了现有技术中存在的无法根据学生知识盲区进行针对性的做题训练的问题。本专利技术的关键在于如何衡量两道习题在内容上的相似性以及如何查询与学生未掌握的知识点相关联的知识点。本专利技术基于知识图谱的大学计算机基础习题推荐方法,运用大学计算机基础知识点构建的知识图谱,使用图团体检测算法从知识点之间的关系结构上分析关联性,从而推荐与学生错误知识点关联性较高的知识点进行学习;通过中文分词提取习题语义特征构建word2vec模型,使用RWMD方法计算学生的错题与其他习题在内容上的相似度,选取相似度高的习题并进行推荐。推荐方法具体包括以下步骤:步骤1,读取学生的某一道错题;步骤2,对步骤1中读取的学生的错题,在习题数据库中查询其对应的知识点,并在大学计算机基础知识图谱中查询与该知识点对应的节点P1;步骤3,对步骤2中得到的节点P1,在大学计算机基础知识图谱中查询流入P1并且与其关系为包含关系的节点P2;步骤4,对步骤3中得到的节点P2,在大学计算机基础知识图谱中查询从P2流出并且与其关系为包含关系的所有节点,定义为集合W1;步骤5,对步骤3中得到的节点P2,在大学计算机基础知识图谱中查询流入P2并且与其关系为前驱关系的节点P3;步骤6,对步骤5中得到的节点P3,在大学计算机基础知识图谱中查询从P3流出与其关系为包含关系的所有节点,定义为集合W2;步骤7,对步骤4、步骤6中得到的节点的集合W1与W2,在大学计算机基础知识图谱中提取包含W1、W2中所有节点的图结构,并且依据图结构形成邻接矩阵;步骤8,对步骤7中得到的邻接矩阵,使用图团体检测算法进行聚类分析,得到与步骤2中得到的节点聚为一类的节点集合,该集合中的节点对应的知识点即为与错误知识点关联性高的知识点;步骤9,对步骤8得到的知识点,整合后推荐给学生;步骤10,对习题数据库中的每道习题使用中文分词提取N个关键词,将N个关键词的集合作为每道习题的语义特征;步骤11,构建word2vec模型并输入步骤10中提取的习题的语义特征进行训练,旨在得到每道习题的关键词词向量;步骤12,使用RWMD算法计算学生错误的习题与其他习题之间的词移距离;步骤13,在习题数据库中查询步骤8得到的知识点所对应的习题;步骤14,将步骤13得到的习题整合后推荐给学生。步骤3中,节点分为两种类型,分别为知识面节点和知识点节点。知识面节点为概括性的知识,知识点节点为知识面节点下更为具体的知识。知识面节点与知识点节点之间存在包含关系,知识面节点和知识面节点之间存在前驱关系,知识点节点与知识点节点之间存在并列关系和因果关系。通过查询知识点节点所属的知识面节点,可以得到该知识面节点包含的全部知识点节点以及该知识面节点的前驱知识面节点;步骤7中,以邻接矩阵的形式在大学计算机基础知识图谱中提取的节点的图结构,其中0表示两个节点没有连接关系,1表示两个节点具有包含关系和并列关系,2表示两个节点具有因果关系和前驱关系;步骤8中,对步骤7得到的邻接矩阵,使用图团体检测算法进行聚类分析以得到与错误知识点关联性高的其他知识点,对聚类结果使用模块性这一指标进行衡量,模块性是衡量团体划分质量的一种标准,值越大表明划分的越好;计算模块性的公式为其中L表示图所包含的边的数量,N表示图所包含的节点的数量,ki表示节点i的度,Aij为邻接矩阵中的值,ci表示节点i的类别。本专利技术重新定义了δ函数;δ函数的逻辑为当节点i、节点j为同一聚类时,如果Aij的值为2,则δ(ci,cj)返回值为2;如果Aij的值为1或0,则δ(ci,cj)返回值为1;当节点i、节点j不属于同一聚类,δ(ci,cj)返回值为0;步骤10中,对习题数据库中的每道习题使用中文分词提取N个关键词x,将N个关键词x的集合作为每道习题的语义特征,例如对于习题Qi可以表示为:Qi={xi1,xi2,xi3…,xin};步骤11中,构建word2vec模型并输入步骤10中提取的习题的语义特征进行训练,将每一个关键词表示为m维的词向量w,则习题Qi的习题向量可以表示为:Vi={wi1,wi2,wi3…,win};步骤12中,使用RWMD算法计算错误习题与其他习题之间的词移距离,词移距离越短,代表两道习题的相似度越高,通过计算词移距离挖掘与错误习题在内容上相似度高的N道习题。本专利技术的有益效果是:本专利技术针对大学计算机基础的知识点繁复,知识点之间的关联性高的特点,对传统的基于内容的推荐方法进行了改进,提出了一种基于知识图谱的大学计算机基础习题推荐方法。所采用的推荐方法是基于大学计算机基础知识点构建的知识图谱,使用图团体检测算法从知识点之间的关系结构上分析知识点间的关联性,从而推荐与学生未掌握的知识点关联性较高的知识点给学生进行学习;通过中文分词提取习题语义特征构建word2vec模型,使用RWMD方法计算学生的错题与其他习题在内容上的相似度,选取相似度高的习题进行推荐。通过分析学生的错题为学生推荐相应的知识点和习题,可以帮助学生尽快扫除知识盲点,更好地掌握大学计算机基础这门课,同时也减轻了任课教师的压力。本文档来自技高网...
【技术保护点】
1.基于知识图谱的大学计算机基础习题推荐方法,其特征在于,运用大学计算机基础知识点构建的知识图谱,使用图团体检测算法从知识点之间的关系结构上分析关联性,从而推荐与学生错误知识点关联性较高的知识点进行学习;通过中文分词提取习题语义特征构建word2vec模型,使用RWMD方法计算学生的错题与其他习题在内容上的相似度,选取相似度高的习题并进行推荐。/n
【技术特征摘要】
1.基于知识图谱的大学计算机基础习题推荐方法,其特征在于,运用大学计算机基础知识点构建的知识图谱,使用图团体检测算法从知识点之间的关系结构上分析关联性,从而推荐与学生错误知识点关联性较高的知识点进行学习;通过中文分词提取习题语义特征构建word2vec模型,使用RWMD方法计算学生的错题与其他习题在内容上的相似度,选取相似度高的习题并进行推荐。
2.根据权利要求1所述的基于知识图谱的大学计算机基础习题推荐方法,其特征在于,所述推荐方法具体包括以下步骤:
步骤1,读取学生的某一道错题;
步骤2,对步骤1中读取的学生的错题,在习题数据库中查询其对应的知识点,并在大学计算机基础知识图谱中查询与该知识点对应的节点P1;
步骤3,对步骤2中得到的节点P1,在大学计算机基础知识图谱中查询流入P1并且与其关系为包含关系的节点P2;
步骤4,对步骤3中得到的节点P2,在大学计算机基础知识图谱中查询从P2流出并且与其关系为包含关系的所有节点,定义为集合W1;
步骤5,对步骤3中得到的节点P2,在大学计算机基础知识图谱中查询流入P2并且与其关系为前驱关系的节点P3;
步骤6,对步骤5中得到的节点P3,在大学计算机基础知识图谱中查询从P3流出与其关系为包含关系的所有节点,定义为集合W2;
步骤7,对步骤4、步骤6中得到的节点的集合W1与W2,在大学计算机基础知识图谱中提取包含W1、W2中所有节点的图结构,并且依据图结构形成邻接矩阵;
步骤8,对步骤7中得到的邻接矩阵,使用图团体检测算法进行聚类分析,得到与步骤2中得到的节点聚为一类的节点集合,该集合中的节点对应的知识点即为与错误知识点关联性高的知识点;
步骤9,对步骤8得到的知识点,整合后推荐给学生;
步骤10,对习题数据库中的每道习题使用中文分词提取N个关键词,将N个关键词的集合作为每道习题的语义特征;
步骤11,构建word2vec模型并输入步骤10中提取的习题的语义特征进行训练,旨在得到每道习题的关键词词向量;
步骤12,使用RWMD算法计算学生错误的习题与其他习题之间的词移距离;
步骤13,在习题数据库中查询步骤8得到的知识点所对应的习题;
步骤14,将步骤13得到的习题整合后推荐给学生。
3.根据权利要求2所述的基于知识图谱的大学计算机基础习题推荐方法,其特征在于,所述步骤3中,节点分为两种类型,分别为知识面节点和知识点节点;...
【专利技术属性】
技术研发人员:朱磊,刘尧林,黑新宏,冯林林,吕泓瑾,张晋源,王一川,姬文江,孟海宁,
申请(专利权)人:西安理工大学,
类型:发明
国别省市:陕西;61