FEC Coverage Detailed Examples

below is copied from cache, the link is dead http://www.eite.org/Labs/modeltech64_10.2c/htmldocs/modelsim_se_user/a_code_cov21.html FEC Coverage Detailed Examples Following are examples detailing the default coverage (FEC) report tables. Example 19-3. FEC Coverage - Simple Expression Let's examine the following FEC report table for the expression (a & b & c) when it receives input vectors {101, 011, 111}: # ----------------Focused Expression View----------------- # Line 31 Item 1 < tempreg1 <= (a & b & c); # Expression totals: 2 of 3 input terms covered = 66.6% # # Input Term Covered Reason for no coverage Hint # ----------- -------- ----------------------- -------------- # a Y # b Y # c N '_0' not hit Hit '_0' # # Rows: Hits FEC Target Matching input patterns # --------- --------- -------------------- ------------------------- # Row 1: 1 a_0 { 011 } # Row 2: 1 a_1 { 111 } # Row 3: 1 b_0 { 101 } # Row 4: 1 b_1 { 111 } # Row 5: ***0*** c_0 { 110 } # Row 6: 1 c_1 { 111 } # # NOTE: # * Order of matching input pattern values: {a,b,c} Each FEC report consists of two tables; •The first table reports coverage on a per-input basis. For inputs that are not covered, the report gives a brief reason for the lack of coverage. The “Hint” column provides information on how to get the input covered. In the FEC report above, input 'c' was not covered because the coverage bin '_0' associated with this input (i.e. c_0) did not receive any hits. The hint says that to get 'c' FEC covered, an input pattern matching c_0 (i.e. {110}) must be applied to this expression during simulation. Matching input patterns are always strings of 1’s and 0’s separated by whitespace. •The second table goes a step deeper and expands each input into its coverage bins. The table lists the Rows, Hits, FEC Target and Matching input patterns. The matching input patterns are always strings of 1’s and 0’s separated by whitespace. In the FEC report above, consider the first row containing the FEC Target (or bin) of a_0: where a is the input and _0 is the value of that input. The full tag of a_0 indicates that this row delivers FEC testing when a's value is 0. This bin was incremented 1 time, since the input vector {011} was seen. By definition a is 0 for every input vector on the a_0 list. Similarly, the input vector for the a_1 list - row 2 in the table - was observed once. Again, by definition, the a_1 list vectors are identical to the a_0 list except with the 'a' bit equal to 1. This is always the case for each pair of FEC rows (non-short circuit logic only). Walking through the truth table in this way, one can see how FEC ensures that each input a, b, and c has been shown to independently affect the expression output. For example, for the conditions of FEC to be satisfied, when an a_0 input vector flips to the corresponding a_1 vector - i.e., only bit 'a' changes to 1, with the other bits unchanged - the output value of the expression MUST also change. In effect, this type of coverage metric can help determine if there is a functional bug in the logic that is feeding the targeted input (FEC Target). It is a powerful tool in that it helps minimize the risk that an expression is masking potential bugs in the logic feeding each of its inputs. If FEC coverage indicates any bins are missed (such as c_0 in Row 3 of Example 19-3) you know that none of your tests ever produced a value of ‘1’ when other inputs are in a state that allow it to control the output. You should then work on the design/stimulus to improve FEC coverage. One method of raising FEC coverage numbers is to modify test stimulus such that appropriate patterns appear at the expression's inputs. The matching input vectors in the report can help in this process. Figure 19-3. Focused Expression Report Sample

转载于:https://www.cnblogs.com/testset/p/5316219.html

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力和灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制和解调过程通过FFT(快速傅立叶变换)和IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据和解调原始数据。 Matlab是一种广泛应用于科研、工程和数据分析的高级编程语言和交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库和工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理和信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE和5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值