学生训练典型题目收集【2】

$\color{Blue}{学生训练典型题目收集【2】}$

在高三学生的课时作业中,每年都会出现一些让我们感觉典型的题目,现加以收集如下:

\(\color{Red}{【008】}\)已知\(a,b>0,a+b=2\),求\(\cfrac{1}{a+1}+\cfrac{4}{b+1}\)的最小值。

思路一:\(a,b>0,a+b=2,0<a<2,\)所以\((a+1)+(b+1)=4\),

\(\cfrac{1}{a+1}+\cfrac{4}{b+1}=\cfrac{1}{4}\times 4\times (\cfrac{1}{a+1}+\cfrac{4}{b+1})=\cfrac{1}{4}\times [(a+1)+(b+1)]\times (\cfrac{1}{a+1}+\cfrac{4}{b+1})=\cfrac{1}{4}(5+\cfrac{b+1}{a+1}+\cfrac{4(a+1)}{b+1}) \ge \cfrac{1}{4}(5+2\sqrt{4})=\cfrac{9}{4}\)

思路二:二元变为一元,利用导数求其最小值。

\(\color{Red}{【009】}\)(2016湖南东部六校联考)对于问题“已知关于\(x\)的不等式\(ax^2+bx+c>0\)的解集为\((-1,2)\),解关于\(x\)的不等式\(ax^2-bx+c>0\)”,给出如下一种解法:由\(ax^2+bx+c>0\)的解集为\((-1,2)\),得到\(a(-x)^2+b(-x)+c>0\)的解集为\((-2,1)\),即关于\(x\)的不等式\(ax^2-bx+c>0\)的解集为\((-2,1)\)

参考上述解法,若关于\(x\)的不等式\(\cfrac{k}{x+a}+\cfrac{x+b}{x+c}<0\)的解集为\((-1,-\cfrac{1}{3})\cup(\cfrac{1}{2},1)\),则关于\(x\)的不等式\(\cfrac{kx}{ax+1}+\cfrac{bx+1}{cx+1}<0\)的解集为________.

分析:本题目对学生的思维的灵活性要求比较高,需要有一定的数学素养的储备。

关于\(x\)的不等式\(\cfrac{k}{x+a}+\cfrac{x+b}{x+c}<0\)的解集为\(x\in (-1,-\cfrac{1}{3})\cup(\cfrac{1}{2},1)\),所以用\(\cfrac{1}{x}\)代换解集中的\(x\)\(-1<\cfrac{1}{x}<-\cfrac{1}{3}\)或者\(\cfrac{1}{2}<\cfrac{1}{x}<1\),可得\(-3<x<-1\)\(1<x<2\),用\(\cfrac{1}{x}\)代换原不等式中的\(x\),即为\(\cfrac{k(\cfrac{1}{x})}{a(\cfrac{1}{x})+1}+\cfrac{b(\cfrac{1}{x})+1}{c(\cfrac{1}{x})+1}<0\)的解集为\(-3<x<-1\)\(1<x<2\),即就是\(x\)的不等式\(\cfrac{kx}{ax+1}+\cfrac{bx+1}{cx+1}<0\)的解集为\(-3<x<-1\)\(1<x<2\)

感悟思考:本题目的求解不是常规的求各个系数的值,然后按照常规解不等式,而是巧妙运用代换法求解,即将解集代换,将不等式代换。

于此类似的有下列问题,

如已知\(f(x)+2f(-x)=2x+3\),求\(f(x)\)的解析式;

再如已知\(3f(x)+f(\cfrac{1}{x})=x\),求\(f(x)\)的解析式。

\(\color{Red}{【010】}\)(2016.湖北七市联考)设向量\(\vec{a}=(1,k),\vec{b}=(x,y)\),设向量\(\vec{a}\)\(\vec{b}\)的夹角为\(\theta\).若对所有满足不等式\(|x-2|\leq y \leq 1\)的所有\(x,y\),都有\(\theta\in (0,\cfrac{\pi}{2})\),则实数\(k\)的取值范围是_________.

分析:向量\(\vec{a}\)\(\vec{b}\)的夹角为\(\theta\),有\(\theta\in (0,\cfrac{\pi}{2})\),故\(0<\cos\theta=\cfrac{x+ky}{\sqrt{1+k^2}\sqrt{x^2+y^2}}<1\),化简得到\(x+ky>0\)\(k^2x^2+y^2>2kxy\),即\(x+ky>0\)\(y\neq kx\),此区域标记为\(A\),所有满足不等式\(|x-2|\leq y \leq 1\)的所有\(x,y\)对应的区域标记为\(B\),本题目其实是要求\(B \subseteq A\)\(B\)的点要处在\(A\)的内部,不能出现在边界上。

如图所示。

https://www.desmos.com/calculator/6aytcxwruw

\(k=0\)时,点\((2,0)\)不满足题意,

\(k>0\)时,须\(k>1\)才可以;

\(k<0\)时, 必须\(-\cfrac{1}{k}>1\),解得\(-1<k<0\),综上\(k\in(-1,0)\cup(1,+\infty)\).

\(\color{Red}{【011】}\)设二次函数\(f(x)=ax^2+bx+c\)的导函数是\(f'(x)\),若对\(\forall x\in R\),不等式\(f(x)\ge f'(x)\)恒成立,则\(\cfrac{b^2}{a^2+2c^2}\)的最大值是____________.

分析:由\(\forall x\in R\),不等式\(f(x)\ge f'(x)\)恒成立,得到\(b^2 \leq 4ac-4a^2\),(由于\(4ac-4a^2>0\),即\(\cfrac{c}{a}=t>1\))

故有\(\cfrac{b^2}{a^2+2c^2} \leq \cfrac{4ac-4a^2}{a^2+2c^2}\),由题目可知\(a>0\),给分子分母同除以\(a^2\),得到 \(\cfrac{4ac-4a^2}{a^2+2c^2}=\cfrac{4\times\cfrac{c}{a}-4}{1+2\times(\cfrac{c}{a})^2}\)

做代换,令\(\cfrac{c}{a}=t\),则 \(\cfrac{4ac-4a^2}{a^2+2c^2}=\cfrac{4t-4}{2t^2+1}\),关于此式的变换比较难,我们转而求\(\cfrac{2t^2+1}{4t-4}\)的最小值。

\(\cfrac{2t^2+1}{4t-4}=\cfrac{2(t-1)^2+4(t-1)+3}{4(t-1)}=\cfrac{t-1}{2}+\cfrac{3}{4(t-1)}+1 \ge 2\sqrt{\cfrac{3}{8}}+1=\cfrac{\sqrt{6}+2}{2}\)

\([\cfrac{4t-4}{2t^2+1}]_{max}=\cfrac{2}{\sqrt{6}+2}=\sqrt{6}-2\)。则\(\cfrac{b^2}{a^2+2c^2}\)的最大值是\(\sqrt{6}-2\).

\(\color{Red}{【012】}\)已知函数\(f(x)=x^2+ex-\cfrac{1}{2}(x<0)\)与函数\(g(x)=x^2+\ln(x+a)\)的图像上存在关于\(y\)轴的对称点,则\(a\)的取值范围是(\(\hspace{2cm}\))。

A、\((-\infty,\sqrt{e})\) \(\hspace{2cm}\) B、\((-\sqrt{e},\cfrac{\sqrt{e}}{e})\) \(\hspace{2cm}\) C、\((-\infty,\cfrac{\sqrt{e}}{e})\) \(\hspace{2cm}\) D、\((-\cfrac{\sqrt{e}}{e},\sqrt{e})\)

\(\color{Red}{【013】}\)已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),数列\(\{a_n\}\)\(\cfrac{1}{2},\cfrac{1}{3},\cfrac{2}{3},\cfrac{1}{4}\)\(\cfrac{2}{4},\cfrac{3}{4},\cfrac{1}{5},\cfrac{2}{5},\cfrac{3}{5},\cfrac{4}{5},\cdots,\cfrac{1}{n},\cfrac{2}{n},\cdots,\cfrac{n-1}{n},\cdots\),若\(S_k=14\),则\(a_k=\cfrac{7}{8}\).

分析:注意到数列的项的特征,重新构造一个数列\(\{b_n\}\)

其中\(b_1=a_1=\cfrac{1}{2}\)

\(b_2=a_2+a_3=\cfrac{1}{3}+\cfrac{2}{3}=1\)

\(b_3=a_4+a_5+a_6=\cfrac{1}{4}+\cfrac{2}{4}+\cfrac{3}{4}=\cfrac{3}{2}\)

\(\cdots\)

\(b_{n-1}=\cfrac{1}{n}+\cfrac{2}{n}+\cdots+\cfrac{n-1}{n}=\cfrac{n-1}{2}\)

很显然,数列\(\{b_n\}\)是首项为\(\cfrac{1}{2}\),公差为\(\cfrac{1}{2}\)的等差数列,注意原来的数列\(\{a_n\}\)非等差非等比数列。

那么\(b_n=\cfrac{n}{2}\),其前\(n\)项和为\(T_n\),则\(T_n=\cfrac{1}{2}(\cfrac{1}{2}+\cfrac{n}{2})n=\cfrac{n(n+1)}{4}\)

\(T_n=\cfrac{n(n+1)}{4}=S_k=14\),则\(n=7\),即对数列\(\{b_n\}\)而言,\(T_7=14\),对数列\(\{a_n\}\)而言,它的\(S_k=T_7\),但是注意\(k\neq 0\),按照这种对应性可知\(a_k=\cfrac{7}{8}\),如果想计算\(k\)的值,那么\(k=1+2+3+4+5+6+7=28\)

\(\color{Red}{【014】}\)已知函数\(f(x)\)的定义域为\(R\),且对于任意实数\(x\),都满足\(f[f(x)-e^x]=e+1\),求\(f(ln2)\)的值。

分析:本题实质是求抽象复合函数的解析式,令内函数\(f(x)-e^x=t\),则有\(f(x)=e^x+t\),又由题目可知,\(f(t)=e+1\),故有\(f(t)=e^t+t\),则\(e^t+t=e+1\),观察可知\(t=1\),即有\(f(x)-e^x=1\)\(f(x)=e^x+1\),所以\(f(ln2)=e^{ln2}+1=3\)

\(\color{Red}{【015】}\)已知\(\Delta ABC\)中,\(sin(A-\cfrac{\pi}{4})=\cfrac{7\sqrt{2}}{26}\),若\(\Delta ABC\)的面积为24,\(c=13\),求\(a\)的值。

分析:由\(sin(A-\cfrac{\pi}{4})=\cfrac{7\sqrt{2}}{26}\),估算\(A\)为锐角,打开整理得到\(sinA-cosA=\cfrac{7}{13}\),结合勾股数\(5,12,13\)可知,\(sinA=\cfrac{12}{13},cosA=\cfrac{5}{13}\),由\(S_{\Delta}=\cfrac{1}{2}bcsinA=\cfrac{1}{2}\times b\times 13\times\cfrac{12}{13}=24\),解得\(b=4\),由余弦定理可得\(a^2=b^2+c^2-2bccosA=16+169-2\times 4\times 13 \times \cfrac{5}{13}=145\),故\(a=\sqrt{145}\).

\(\color{Red}{【018】}\)高中数学中“求最大(小)值问题”的数学素材和知识点:

几何方面:①线性规划 ②向量圆锥曲线的几何意义③两点间距离和与差

④⑤⑥⑦⑧⑨⑩

代数方面:①函数法求值域、最值②均值不等式③实数比较大小④放缩法

⑤⑥⑦⑧⑨⑩

\(\color{Red}{【019】}\)高中数学中使用“赋值法”的数学素材和知识点:

①抽象函数的性质证明,如单调性、奇偶性、周期性、对称性证明②求解析式,求值域问题③数列④不等式证明⑤二项式系数求和

⑥⑦⑧⑨⑩

转载于:https://www.cnblogs.com/wanghai0666/p/5955229.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值