学生训练典型题目收集【1】

$\color{Blue}{学生训练典型题目收集【1】}$

在高三学生的课时作业中,每年都会出现一些让我们感觉典型的题目,现加以收集如下:

$\color{Red}{【001】}$

某个命题与自然数\(n\)有关,若\(n=k(k\in N^*)\)时命题成立,那么可以推得当\(n=k+1\)时命题也成立。现已知当\(n=5\)时,该命题不成立,那么可以推得(\(\;\;\;\;\;\;\;\)

A.当\(n=6\)时,该命题不成立 \(\;\;\;\;\;\;\;\) B.当\(n=6\)时,该命题成立 \(\;\;\;\;\;\;\;\) C.当\(n=4\)时,该命题不成立 \(\;\;\;\;\;\;\;\) D.当\(n=4\)时,该命题成立

[答案]选C.解析:本题目考查数学归纳法和命题的等价。

原命题认定为真,则其逆否命题是:“若\(n=k+1(k\in N^*)\)时命题不成立,则\(\;\;n=k\;\;\)时命题也不成立。”也为真,这样由于题目已知当\(n=5\)时,该命题不成立,则可以推出当\(n=4\)时,该命题不成立,而且当\(n=3,2,1\)时,该命题也不成立。

$\color{Red}{【002】}$

已知\(x^2+y^2\leq 1\),求\(|2x+y-2|+|x+3y-6|\)的最小值?

992978-20160930162615281-1170982132.png
思路一:转化为点线距

为什么想到这个,我们发现\(|2x+y-2|+|x+3y-6|=\sqrt{5}\cfrac{|2x+y-2|}{\sqrt{5}}+\sqrt{10}\cfrac{|x+3y-6|}{\sqrt{10}}\)

其中表达式\(\cfrac{|2x+y-2|}{\sqrt{5}}\)\(\cfrac{|x+3y-6|}{\sqrt{10}}\)分别表示园内及圆上的动点到两条直线的距离,所以可以把“数”的问题转化为“形”的问题。

思路二:三角代换,令\(x=R\cos\theta,y=R\sin\theta,R\in[0,1]\),则\(|2x+y-2|+|x+3y-6|\ge|3R\cos\theta+4R\sin\theta-8|=|5R\sin(\theta+\phi)-8|\)

思路三:

$\color{Red}{【003】}$

存在函数\(f(x)\)满足:对任意的\(x\in R\)都有(\(\;\;\; D\;\;\;\;\)

A、\(f(sin2x)=sinx\) \(\;\;\; \;\;\;\;\) B、$f(sin2x)=x^2+x $ \(\;\;\; \;\;\;\;\) C、\(f(x^2+1)=|x+1|\) \(\;\;\; \;\;\;\;\) D、\(f(x^2+2x)=|x+1|\)

分析:利用\(x\)取特殊值,结合函数的定义就能判断。

A、\(f(sin2x)=sinx\)\(x=0\)时,\(f(0)=0;x=π/2\)时,则\(sin2x=0\), 即\(f(0)=1\),即出现\(f(0)=0\)\(1\),一对多,错误。

B、\(f(sin2x)=x^2+x\)\(x=0\)时,\(f(0)=0;x=π\)时,则\(sin2x=0,\)\(f(0)=π^2+π,\)即出现\(f(0)=0\)\(π^2+π\),一对多,错误。

C、\(f(x^2+1)=|x+1|\)\(x=-1\)时,\(f(2)=0;x=1\)时,\(f(2)=2\),即出现\(f(2)=0\)\(2\),一对多,错误。

D、\(f(x^2+2x)=|x+1|\)\(x+1=t\),则\(f(x^2+2x)=|x+1|\)化为\(f(t^2-1)=|t|\),再令\(t^2-1=x\),则$t=±\sqrt{x+1} $

所以\(f(x)=\sqrt{x+1}\) 所以存在函数\(f(x)=\sqrt{x+1}\),使得\(f(x^2+2x)=|x+1|\)。故选\(D.\)

感悟:相同考法的题目,判断哪个图像不是函数图像,我们的做法就是做x轴的垂线,若垂线和图像有两个及其以上的交点,则一定不是函数图像,因为出现了“一对多”,不符合函数的定义。

$\color{Red}{【004】}$

设分段函数 \(f(x)=\begin{cases} 2x,&x\leq 0 \\\ log_2^{\;\;x} ,&x>0 \end{cases}\)若对任意给定的\(t\in (1,+∞),\)都存在唯一的\(x\in R,\)满足\(f(f(x))=2a^2t^2+at,\)则正实数\(a\)的最小值是(  )

A.2 \(\;\;\; \;\;\;\;\) B. \(\cfrac{1}{2}\) \(\;\;\; \;\;\;\;\) C. \(\cfrac{1}{4}\) \(\;\;\; \;\;\;\;\) D. \(\cfrac{1}{8}\)

【分析】此题的突破口在于如何才会存在唯一的\(x\)满足条件,结合\(f(x)\)的值域范围或者图象,易知只有在\(f(x)\)的自变量与因变量存在一一对应的关系时,即只有当\(f(x)>2\)时,才会存在一一对应.

【解答】解:根据\(f(x)\)的函数,我们易得出其值域为\(R,\)

又∵\(f(x)=2x,(x≤0)\)时,值域为\((0,1];\) \(f(x)=log_2^x,(x>0)\)时,其值域为\(R,\)

∴可以看出\(f(x)\)\((0,1]\)上有两个解,

要想\(f(f(x))=2a^2t^2+at,\)\(t\in(1,+∞)\)上只有唯一的\(x\in R\)满足,

必有\(f(f(x))>1\) (因为\(2a^2t^2+at>0\)),

所以:\(f(x)>2,\)解得:\(x>4\)

\(x>4\)时,\(x\)\(f(f(x))\)存在一一对应的关系,

\(2a^2t^2+at>1,t∈(1,+∞),\)\(a>0,\)

所以有:\((2at-1)(at+1)>0,\)解得:\(t>\cfrac{1}{2a}\)或者\(t<-\cfrac{1}{a}\)(舍去),

\(\cfrac{1}{2a} \leq 1\),∴\(a\ge \cfrac{1}{2}\),故选:\(B\)

【点评】本题主要考查了分段函数的应用,本题关键是可以把\(2a^2t^2+at\)当作是一个数,然后在确定数的大小后再把它作为一个关于t的函数.

$\color{Red}{【005】}$

(2014.浙江卷)设\(\theta\)是两个非零向量\(\vec{a},\vec{b}\)的夹角,已知对任意实数\(t\)\(|\vec{b}+t\vec{a}|\)的最小值是1,(\(\;\;\;\; B\;\;\;\)

A、若\(\theta\)确定,则\(|\vec{a}|\)唯一确定 \(\;\;\; \;\;\;\;\) B、若\(\theta\)确定,则\(|\vec{b}|\)唯一确定 \(\;\;\;\;\;\;\;\) C、若\(|\vec{a}|\)确定,则\(\theta\)唯一确定 \(\;\;\; \;\;\;\;\) D、若\(|\vec{b}|\)确定,则\(\theta\)唯一确定

分析:利用\(\Delta=0\),而不是$ \Delta \leq 0 $.
求解:

【法1】\(|\vec{b}+t\vec{a}|≥1\),则有\(\vec{b}^2+t^2\vec{a}^2+2\vec{a}\vec{b}t≥1\),即有\(t^2a^2+2|\vec{a}||\vec{b}|\cos\theta\cdot t+b^2-1≥0\),要保证对任意实数\(t\)\(|\vec{b}+t\vec{a}|\)的最小值取到1,则必须\(\Delta =0\),而不是\(\Delta\leq 0\),故解得\(\Delta=4a^2b^2\cos^2\theta-4a^2(b^2 -1)=0\),则有\(b^2-1=cos^2\theta\),故选B.

【法2】令\(f(t)=|\vec{b}+t\vec{a}|^2=b^2+t^2a^2+2abt\),利用二次函数的最小值是1求解,倒是不容易出错。

感悟:同类题,已知开口向上的二次函数的值域是\([0,+∞)\),则利用\(\Delta=0\),而不是\(\Delta \leq 0\).

$\color{Red}{【006】}$

已知映射\(f:A\rightarrow B\),其中\(A=B=R\),对应法则\(f:x\rightarrow y= -x^2+2x,\)对于实数\(k\in B\)在集合\(A\)中存在两个不同的原像,则\(k\)的取值范围是(  )
A.k>1 \(\;\;\;\;\;\;\;\;\;\;\;\;\) B.k≤1 \(\;\;\;\;\;\;\;\;\;\;\;\;\) C.k<1 \(\;\;\;\;\;\;\;\;\;\;\;\;\) D.k≥1

分析:∵对于实数\(k\in B\)在集合\(A\)中存在两个不同的原像,∴ $ y=-x^2+2x= -(x^2-2x+1)+1≤1,$ 当\(y=1\)时,有两个相同的\(x\),不合题意,∴ \(k<1\),故选C.

\(\color{Blue}{【对照1】}\)映射\(f:x\rightarrow y=-x^2+2x\)\(\scriptsize{M}\)\(\scriptsize{N}\)的映射,\(\scriptsize{M}=\scriptsize{N}=\scriptsize{R}\),若对任意实数\(\scriptsize{P}\in \scriptsize{N}\),在\(\scriptsize{M}\)中不存在原象, 则\(\scriptsize{P}\)的取值范围是(  )

A.[1,+∞) \(\;\;\;\;\;\;\;\;\;\;\;\;\) B.(1,+∞)\(\;\;\;\;\;\;\;\;\;\;\;\;\) C.(-∞,1] \(\;\;\;\;\;\;\;\;\;\;\;\;\) D.(-∞,+∞)

分析:由对应关系\(y=-x^2+2x\)求出以\(R\)为定义域的函数的值域,由补集思想得到集合\(N\)中不存在原像的元素构成的集合,则答案可求.

解析:∵ \(y=-x^2+2x= -(x-1)^2+1≤1\)

∴ 对于集合\(M=R\),那么在\(f:x\rightarrow y=-x^2+2x\)的对应下,对应的像的集合为\(\{y|y\leq1\}\)

∴集合\(N=R\)中,满足\(y>1\)的元素在\(M\)中不存在原像.即\(P\)的取值范围是\((1,+∞)\)

故选:B.【点评】题考查了映射的概念,考查了函数值域的求法,训练了配方法,体现了补集思想,是基础题.

\(\color{Blue}{【对照2】}\)映射\(f:x\rightarrow y=-x^2+2x\)\(M\)\(N\)的映射,\(M=N=R\),若有(存在)一实数\(P\in N\),在\(M\)中不存在原象, 则\(P\)的取值范围是(  )
A.[1,+∞)\(\;\;\;\;\;\;\;\;\;\;\;\;\) B.(1,+∞) \(\;\;\;\;\;\;\;\;\;\;\;\;\) C.(-∞,1] \(\;\;\;\;\;\;\;\;\;\;\;\;\) D.(-∞,+∞)

分析:∵\(y=-x^2+2x= -(x-1)^2+1≤1\). ∴对于集合\(M=R\),在\(f:x\rightarrow y = -x^2+2x\)的对应下, 对应的像的集合为\(\{y|y≤1\}\)

∴集合\(N=R\)中,当\(P\in(-∞,1]\) 时,实数\(P\)\(M\)中必然存在原像。

现要求存在一实数\(P\in N\),在\(M\)中不存在原象,则\(P\)的取值范围必然要包含\((-∞,1]\) , 即\(P\)的取值范围是\((-∞,+∞)\).故选:D.

$\color{Red}{【007】}$

已知函数\(f(x)=x^2-ax+a+3\)\(g(x)=ax-2x\),若不存在\(x_0\in R\),使得\(f(x_0)<0\)\(g(x_0)<0\)同时成立,则实数\(a\)的取值范围是多少?

解析:函数\(f(x)=x^2-ax+a+3\),对称轴是\(x=\cfrac{a}{2}\)\(\Delta=a^2-4(a+3)=a^2-4a-12\)\(g(x)=ax-2x=a(x-2)\),恒过定点\((2,0)\)
992978-20161013100128156-493675623.png
\(1^。\)\(a=0\)时,\(f(x)=x^2+3,g(x)=0\),满足题意。

\(2^。\)\(a>0\)时,\(x_0<2\)时,\(g(x_0)<0\),故只须\(x_0<2\)时,\(f(x_0)\ge0\)恒成立。

只需要\(\begin{cases} &a>0 \\\ &\Delta<0\end{cases}\)或者\(\begin{cases} &a>0 \\\ &\Delta\ge 0 \\\ &\cfrac{a}{2}\ge 2 \\\ &f(2)=7-a\ge 0\end{cases}\)

解得\(0<a<6\)\(6 \leq a \leq 7\),故 \(0 <a \leq 7\).

992978-20161013100136140-1095357019.png

\(3^。\)\(a<0\)时,\(x_0>2\)时,\(g(x_0)<0\),故只须\(x_0>2\)时,\(f(x_0)\ge0\)恒成立。

只需要\(\begin{cases} &a<0 \\\ &\Delta<0\end{cases}\)或者\(\begin{cases} &a<0 \\\ &\Delta\ge 0 \\\ &\cfrac{a}{2}\leq 2 \\\ &f(2)=7-a\ge 0\end{cases}\)

解得\(-2<a<0\)\(a \leq -2\),故 \(a < 0\).

综合以上可知,\(a\leq 7\)

$\color{Red}{【008】}$

【2016-2017宝鸡市第一次质量检测16题】我市在“录像课评比”活动中,。。。

分析:本题考察逻辑与推理中的不完全归纳法,策略:当5节课不好思考时,先减少课时思考;

当只有1节课时,比如结果\((1,优)\)\((1,差)\),优秀课最多是1节,

当只有2节课时,比如结果\((2,差)\)\((1,优)\),优秀课最多是2节,

当只有3节课时,比如结果\((3,差)\)\((2,中)\)\((1,优)\),优秀课最多是3节,

解释:从第一个维度评判,第一节课是优秀课,从第二个维度评判,第三节课是优秀课,评判第二节课时,由于2>1,中好于差,故第二节课从两个维度都不亚于其他课,那么也是优秀课。

当只有4节课时,比如结果\((4,差)\)\((3,中)\)\((2,良)\)\((1,优)\),优秀课最多是4节,

当只有5节课时,比如结果\((5,差)\)\((4,次差)\)\((3,中)\)\((2,良)\)\((1,优)\),优秀课最多是5节,

转载于:https://www.cnblogs.com/wanghai0666/p/5887378.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值