【笔记】《通俗详细地讲解什么是P和NP问题》的概念记录

1问题规模:
要计算或解决一个问题,该问题通常有一个大小规模,用n表示。
2算法的时间复杂度
计算次数与n的关系函数。(因为计算次数隐含时间)。
3多项式时间复杂度
所有形如a*n^k+b*n^(k-1)+c*n^(k-2)……都可记为O(n^k), n^k表示n的k次方,*为乘号,这样的复杂度称为多项式时间复杂度。
4指数时间复杂度
若是时间复杂度形如k^n,k为大于1的常数,或n!,或更大的,就称为指数型时间复杂度。显然,当n足够大时,指数型时间比多项式要大得多的多。
5 P问题
能用多项式时间内得到计算结果的问题,称为多项式问题,也就是P。
6 指数型问题
所有绝对不可能用多项式时间求解的问题,称为指数型问题。
7 NP问题
有这样一类问题,假使你得到了问题的解,我要验证,验证所花的时间是多项式时间,至于求解本身所花的时间是否是多项式时间我不管,可能有多项式算法,可能没有,也可能是不知道,这类问题称为NP问题。
8 P与NP的关系

P问题肯定是NP问题,最不济重算一遍;但NP是否是P,就不好确定了。现在验证所有指数型问题肯定不是NP


原文:http://blog.sciencenet.cn/blog-327757-531546.html

参考:http://zh.wikipedia.org/wiki/%E8%AE%A1%E7%AE%97%E5%A4%8D%E6%9D%82%E6%80%A7%E7%90%86%E8%AE%BA

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值