素数测试算法(基于Miller-Rabin的MC算法) // Fermat素数测试法

在以往判断一个数n是不是素数时,我们都是采用i从2到sqrt(n)能否整除n.如果能整除,则n是合数;否则是素数.但是该算法的时间复杂度为O(sqrt(n)),当n较大时,时间性能很差,特别是在网络安全和密码学上一般都是需要很大的素数.而从目前来看,确定性算法判断素数的性能都不好,所以可以用MC概率算法来解决,其中Miller Rabin算法就是其中的很经典的解决方法.下面首先介绍下相关的数学理论.
  • 数学原理

Fermat小定理:
若n是素数,则对所有1≤a≤n-1的整数a,有a^(n-1)mod n=1;

该定理的逆否命题也成立,即a^(n-1)mod n!=1,则n为合数.但是费马定律的逆命题就不一定成立了,比如当a=4,n=15时,4^14mod15=1,但是4不是素数而是合数.


 

Fermat(n) {
      a ←uniform(1..n-1);
      if     a^(n-1)modn=1   then
      return true;  //未必正确
      else
      return false;//正确,一定是合数
 } 

 


 

不过,从大量数据统计来看,如果满足a^(n-1)mod n=1,则n较大概率为素数.那么,我们把那些使得n原本为合数而被看成素数的a叫做伪证据,n为伪素数.同样从大量数据看出有些伪素数n有很多伪证据a,比如当n=561,a有318个可使得结果判为素数.所以,我们定义了强伪素数概念:


强伪素数
 设n是一个大于4的奇整数,s和t是使得(n-1)=2^s*t的正整数,其中t为奇数,设B(n)是如下定义的整数集合:
 a属于集合B(n)当且仅当2≤a≤n-2且
 
1: a^tmodn=1
2: 存在整数i,0<=i<s满足a^((2^i)*t) mod n=n-1
当n为素数时, 任意a在2和n-1中,均有a属于集合B(n)
当n为合数时,若a属于集合B(n),则称n为一个以a为底(基)的强伪素数,称a为n素性的强伪证据。
n为素数,说明它对所有底均为强伪素数

 

Btest(a,n){
 //n为奇数,返回true。即返回真说明n是强伪素数
  s←0; t ←n-1; //t开始为偶数
      repeat
         s++;t ← t÷2;
  until t mod 2 = 1; //n-1=2st     t为奇数
         x ←at mod n;
  if x=1 or x=n-1 then  return true;    //满足①or②。
  for i ←1 to s-1 do{
         x ←x2 mod n;
         if x=n-1 then return true; //满足②,
  }
  return false;}

 


 

通过这一定义则发现,小于1000的奇合数中,随机选到一个强伪证据的概率小于1%
更重要的是,对任一奇合数,强伪证据比例都很小
所以,我们可以多次运行下面的算法,就可把错误概率降低我们可控制的范围


MillRab(n) {  //奇n>4,返回真时表示素数,假表示合数
 a←uniform(2..n-2);
 return Btest(a,n);   //测试n是否为强伪素数
}//该算法是3/4-正确,偏假的。


 

 


RepeatMillRob(n,k){
      for i ←1 to k do
   if MillRob(n) =false then
    return false;  //一定是合数
   return true;
 }


 

则判断错误概率为(1/4)^k,正确的为1-(1/4)^k.当k取一定值时,判断正确的概率可高度99.99%.

  • 实行源代码(用C++语言)

Miller-Rabin法

#include"iostream.h"
#include"time.h"
#include"stdlib.h"
#include"math.h"

class judge_prime
{
 private:
 
 public:
  
  int Btest(int a,int n);
  int MillRab(int n);
  int RepeatMillRab(int n,int k);
};

int judge_prime:: Btest(int a,int n)
{
 int s=0;
 int t=n-1;
 int i=1;
 int x=1;
 int y;
 do
 {
  s++;
  t=t/2;
 }while((t%2)!=1);
 while(i<=t)
 {
  x=(x*a)%n;
  i++;

 }
 if((x==1)||(x==n-1))return 1;
 for(int j=1;j<=s-1;j++)
 {
  y=1;
  for(int k=1;k<=j;k++)
  {
   y=2*y;
  }
  i=1;
  x=1;
  while(i<=(y*t))
  {
   x=(x*a)%n;
   i++;
  }
  if(x==n-1)return 1;
 }
 return 0;

}
int judge_prime::MillRab(int n)
{
 int a;
 srand((unsigned)time(0));
 a=rand()%(n-3)+2;
 return Btest(a,n);
}
int judge_prime::RepeatMillRab(int n,int k)
{
 int i;
 for(i=1;i<=k;i++)
 {
  if(MillRab(n)==0)return 0;
 }
 return 1;
}
int main()
{
 int i;
 int n=10000;
 int result=0;
 cout<<2<<" "<<3<<" ";
 for(i=5;i<=n;)
 {
  judge_prime P;
  if(P.RepeatMillRab(i,(int)log10(i)))
   cout<<i<<" ";
  i=i+2;
 }
 return 0;

}//具体的解释就不说了,全在上面的理论中.

原始算法(C语言)

#include"stdio.h"
#include"math.h"
int main()
{
 int i;
 int j;
 int n=10000;
 for(i=2;i<=n;i++)
 {
  for(j=2;j<=(int)sqrt(i);j++)
  {
   if(i%j==0) break;
  }
  if(j>(int)sqrt(i))
   printf("%d ",i);
 
 }
 return 0;

  • 测试数据(我们用10000以内的数)

Miller-Rabin算法得到的结果为:

 

2 3 5 7 9 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103
 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211
 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587
 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 697 701
 703 709 719 721 727 733 739 743 751 757 761 769 773 781 787 797 809 811 821 823
 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967
 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301
 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1417 1423 1427 1429 1433
 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543
 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637
 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777
 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901
 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027
 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141
 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281
 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389
 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539
 2543 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671
 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767
 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897
 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 2981 2999 3001 3011 3019 3023
 3037 3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3145 3163 3167 3169
 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307
 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433
 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547
 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3641 3643 3659 3671
 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797
 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923
 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057
 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4141 4153 4157 4159 4177 4201
 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327
 4337 4339 4349 4357 4363 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463
 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603
 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733
 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903
 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009
 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 5101 5107 5113 5119 5147 5153
 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 5303
 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441
 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569
 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701
 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843
 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953 5963 5981
 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121
 6131 6133 6143 6151 6163 6173 6197 6199 6203 6205 6211 6217 6221 6229 6247 6257
 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361
 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481 6491 6521 6529 6547
 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679
 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823
 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959
 6961 6967 6971 6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079
 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193 7207 7211 7213 7219 7229 7237
 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393 7411 7417
 7433 7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547
 7549 7559 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 7673
 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823
 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951
 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 8117
 8123 8147 8161 8167 8171 8179 8191 8209 8219 8221 8231 8233 8237 8243 8263 8269
 8273 8287 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387 8389 8419 8423
 8429 8431 8443 8447 8461 8467 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581
 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 8693 8699 8707
 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831 8837
 8839 8849 8861 8863 8867 8887 8893 8923 8929 8933 8941 8951 8963 8969 8971 8999
 9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 9073 9091 9103 9109 9127 9133
 9137 9151 9157 9161 9173 9181 9187 9199 9203 9209 9221 9227 9239 9241 9257 9277
 9281 9283 9293 9311 9319 9323 9337 9341 9343 9349 9371 9377 9391 9397 9403 9413
 9419 9421 9431 9433 9437 9439 9461 9463 9467 9473 9479 9491 9497 9511 9521 9533
 9539 9547 9551 9587 9601 9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689
 9697 9719 9721 9733 9739 9743 9749 9767 9769 9781 9787 9791 9803 9811 9817 9829
 9833 9839 9851 9857 9859 9871 9883 9887 9901 9907 9923 9929 9931 9941 9949 9967
 9973

用原始的算法得到的结果为:

2 3 5 7 9 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103
 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211
 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587
 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 697 701
 703 709 719 721 727 733 739 743 751 757 761 769 773 781 787 797 809 811 821 823
 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967
 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301
 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1417 1423 1427 1429 1433
 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543
 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637
 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777
 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901
 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027
 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141
 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281
 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389
 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539
 2543 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671
 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767
 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897
 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 2981 2999 3001 3011 3019 3023
 3037 3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3145 3163 3167 3169
 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307
 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433
 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547
 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3641 3643 3659 3671
 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797
 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923
 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057
 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4141 4153 4157 4159 4177 4201
 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327
 4337 4339 4349 4357 4363 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463
 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603
 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733
 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903
 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009
 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 5101 5107 5113 5119 5147 5153
 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 5303
 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441
 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569
 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701
 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843
 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953 5963 5981
 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121
 6131 6133 6143 6151 6163 6173 6197 6199 6203 6205 6211 6217 6221 6229 6247 6257
 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361
 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481 6491 6521 6529 6547
 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679
 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823
 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959
 6961 6967 6971 6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079
 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193 7207 7211 7213 7219 7229 7237
 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393 7411 7417
 7433 7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547
 7549 7559 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 7673
 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823
 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951
 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 8117
 8123 8147 8161 8167 8171 8179 8191 8209 8219 8221 8231 8233 8237 8243 8263 8269
 8273 8287 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387 8389 8419 8423
 8429 8431 8443 8447 8461 8467 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581
 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 8693 8699 8707
 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831 8837
 8839 8849 8861 8863 8867 8887 8893 8923 8929 8933 8941 8951 8963 8969 8971 8999
 9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 9073 9091 9103 9109 9127 9133
 9137 9151 9157 9161 9173 9181 9187 9199 9203 9209 9221 9227 9239 9241 9257 9277
 9281 9283 9293 9311 9319 9323 9337 9341 9343 9349 9371 9377 9391 9397 9403 9413
 9419 9421 9431 9433 9437 9439 9461 9463 9467 9473 9479 9491 9497 9511 9521 9533
 9539 9547 9551 9587 9601 9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689
 9697 9719 9721 9733 9739 9743 9749 9767 9769 9781 9787 9791 9803 9811 9817 9829
 9833 9839 9851 9857 9859 9871 9883 9887 9901 9907 9923 9929 9931 9941 9949 9967
 9973

我用了比较算法(如下)发现,两个结果相同,也就是说概率算法完全正确,没有一个错误,100%成功.

 


#include"stdio.h"
#include"stdlib.h"
int get(FILE *P)
{
 char buffer[5];
 int data=0;
 char c;
 int i=0;
 while(((c=fgetc(P))!=' ')&&(c!=EOF)&&(c!='\n'))
 {
  buffer[i]=c;
  i++;
 }
 buffer[i]='\0';
 data=atoi(buffer);
 return data;
}
int main()
{
 FILE *P1;
 FILE *P2;
 int data1=1;
 int data2=1;
 if((P1=fopen("D:\\p1.txt","r"))==NULL)
 {
  printf("can't open file p1");
  exit(0);
 }
 if((P2=fopen("D:\\p2.txt","r"))==NULL)
 {
  printf("can't open file p2");
  exit(0);
 }
 do
 {
  if(data1==data2)
  {
   data1=get(P1);
   data2=get(P2);
  }
  if(data1<data2)
  {
   printf("%d ",data1);
   data1=get(P1);
  }

 

 }while(data1!=0);
 fclose(P1);
 fclose(P2);
 return 0;
}

 


 

参考文献:<算法设计> --黄教授

转载:http://blog.chinaunix.net/uid-403984-id-2407223.html

转载于:https://www.cnblogs.com/hoojjack/p/4205729.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Miller-Rabin素性测试算法是一种用于判断一个数是否为质数的算法。该算法基于费马小定理,使用随机数进行迭代运算,可以高效地判断一个数是否为质数。 具体来说,该算法将要判断的数记作n,随机选取一个小于n的正整数a,将a与n进行求模运算得到b。如果b等于0或者b等于n-1,则继续选择下一个a。否则,将b平方并对n取模,得到c。如果c等于1或者c等于n-1,则继续选择下一个a。否则,不断平方c并对n取模,直到c等于1或者迭代次数达到了一定阈值。如果c等于1,则n可能是一个合数;如果迭代过程中出现了c等于n-1的情况,则n很可能是一个质数。 为了提高判断的准确性,Miller-Rabin算法会进行多次随机迭代,每次选取不同的随机数a。随机迭代次数越多,判断结果的准确性越高,但计算时间也越长。 总之,Miller-Rabin素性测试算法是一种高效、准确的判断一个数是否为质数的算法,被广泛应用于密码学、计算机科学等领域。 ### 回答2: Miller-Rabin素性测试算法是一种用于判断一个数是否为素数的快速算法。该算法基于费马小定理,利用随机数的特性来判断一个数是否为素数。该算法的优势在于速度快且准确率高,同时能够应对大整数的素性测试。 该算法的具体步骤如下: 1. 首先确定待测试的数n,如果n为偶数,则直接判断n是否等于2,如果是则n为素数,因为2是最小的质数。 2. 若n为奇数,则写成n-1=2^r * d的形式,其中r为非负整数,d为奇数。 3. 接着随机选取一个整数a,且1 < a < n-1。计算a^d mod n,如果结果等于1或n-1,则可以认为n有很大的可能是素数,结束测试。 4. 若结果不等于1或n-1,则重复计算a^(2^j*d) mod n,直到出现下面两种情况之一:结果为1,或者出现了j=0,1,...,r-1时,结果为n-1。 5. 如果满足上述两种情况之一,则认为n有很大的可能是素数,结束测试。否则,重新随机选取一个a,重复上述操作进行测试。 需要说明的是,该算法的准确率可以通过多次测试进行提高。一般来说,重复进行10~20次检验,即可认为检验结果是正确的。 总之,Miller-Rabin素性测试算法是一种简单高效的素数测试算法,可以广泛应用于需要高精度计算的场合。它在加密、密码学等领域中,有着重要的应用价值。 ### 回答3: Miller-Rabin素性测试算法是一种用于判断一个数是否为素数算法,名字来源于两位发明者:Gary L. Miller和Michael O. Rabin。与其它素数检测算法不同,Miller-Rabin素性测试算法有极高的概率能够正确地识别素数,其准确率可以达到误判的可能性小于$\frac{1}{4}$。 Miller-Rabin素性测试算法的基本原理是利用了费马小定理和欧拉判别法,即对于一个素数$p$和$a<p$,有$a^{p-1} \equiv 1 \pmod{p}$,而对于合数$n=pq$,其中$p,q$为大于1的素数,则在模n下,$a^{n-1} \equiv 1 \pmod{n}$,并且除了一些“小概率事件”外,$a^{(n-1)/2} \equiv \pm 1 \pmod{n}$。 Miller-Rabin 素性测试算法的流程如下: 1.将$n-1$分解成$2^sd$的形式,其中$d$是奇数。 2.对于给定的$a<n$,利用费马小定理,计算$a^d \pmod{n}$。 3.如果$a^d \equiv 1 \pmod{n}$,则认为$n$可能是一个素数算法结束。 4.对于$0\leq r \leq s-1$,如果$a^{2^rd} \equiv -1 \pmod{n}$,则认为$n$可能是一个素数算法结束。 5.如果$a^{2^sd} \not \equiv 1 \pmod{n}$或$a^{2^{r}d} \not \equiv -1 \pmod{n}$(其中$0\leq r \leq s-1$),则认为$n$不是素数算法结束。 通过多次进行以上的步骤,可以提高算法的准确率。 Miller-Rabin素性测试算法是一种在计算机领域经常使用的算法,其特点是计算量较小、正确率较高、可扩展性好。在计算机安全领域,该算法被广泛地应用于RSA算法中,用于加密和解密数据。虽然该算法在某些情况下会出现一定的偏差,但是通过多次计算,可以达到一个非常高的准确率。因此,在实际应用中,Miller-Rabin素性测试算法是一个非常实用的工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值