AVL树

AVL树的介绍

  AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反)。带有平衡因子1、0或 -1的节点被认为是平衡的。带有平衡因子 -2或2的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。

  上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1;而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1)。

  如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种情况:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:


  上图中的4棵树都是'失去平衡的AVL树',从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:

  上面的两张图都是为了便于理解,而列举的关于'失去平衡的AVL树'的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

  (1) LL:LeftLeft,也称为'左左'。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致'根的左子树的高度'比'根的右子树的高度'大2,导致AVL树失去了平衡。

  (2) LR:LeftRight,也称为'左右'。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致'根的左子树的高度'比'根的右子树的高度'大2,导致AVL树失去了平衡。

  (3) RL:RightLeft,称为'右左'。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致'根的右子树的高度'比'根的左子树的高度'大2,导致AVL树失去了平衡

  (4) RR:RightRight,称为'右右'。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致'根的右子树的高度'比'根的左子树的高度'大2,导致AVL树失去了平衡。
  如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍'LL(左左),LR(左右),RR(右右)和RL(右左)'这4种情况对应的旋转方法。

2.1 LL的旋转

  LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:

  图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。对于LL旋转,你可以这样理解为:LL旋转是围绕'失去平衡的AVL根节点'进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着'左孩子,即k1'使劲摇。将k1变成根节点,k2变成k1的右子树,'k1的右子树'变成'k2的左子树'。LL的旋转代码如下:

private static AvlNode rotateWithLeftChild(AvlNode k2) {
	AvlNode k1 = k2.left;
	k2.left = k1.right;
	k1.right = k2;
	k2.height = max(height(k2.left), height(k2.right)) + 1;
	k1.height = max(height(k1.left), k2.height) + 1;
	return k1;
}

2.2 RR的旋转

  理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:

  图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。RR的旋转代码如下:

private static AvlNode rotateWithRightChild(AvlNode k1) {
	AvlNode k2 = k1.right;
	k1.right = k2.left;
	k2.left = k1;
	k1.height = max(height(k1.left), height(k1.right)) + 1;
	k2.height = max(height(k2.right), k1.height) + 1;
	return k2;
}

2.3 LR的旋转

  LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:


  第一次旋转是围绕'k1'进行的'RR旋转',第二次是围绕'k3'进行的'LL旋转'。LR的旋转代码:

private static AvlNode doubleWithLeftChild(AvlNode k3) {
	k3.left = rotateWithRightChild(k3.left);
	return rotateWithLeftChild(k3);
}

2.4 RL的旋转

  RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

  第一次旋转是围绕'k3'进行的'LL旋转',第二次是围绕'k1'进行的'RR旋转'。

private static AvlNode doubleWithRightChild(AvlNode k1) {
	k1.right = rotateWithLeftChild(k1.right);
	return rotateWithRightChild(k1);
}

3. 插入

  插入节点的代码

private AvlNode insert(Comparable x, AvlNode t) {
	if (t == null)
		t = new AvlNode(x, null, null);
	else if (x.compareTo(t.element) < 0) {
		t.left = insert(x, t.left);
		if (height(t.left) - height(t.right) == 2)
			if (x.compareTo(t.left.element) < 0)
				t = rotateWithLeftChild(t);
			else
				t = doubleWithLeftChild(t);
	} else if (x.compareTo(t.element) > 0) {
		t.right = insert(x, t.right);
		if (height(t.right) - height(t.left) == 2)
			if (x.compareTo(t.right.element) > 0)
				t = rotateWithRightChild(t);
			else
				t = doubleWithRightChild(t);
	} else
		;
	t.height = max(height(t.left), height(t.right)) + 1;
	return t;
}
public void insert(Comparable x) {
	root = insert(x, root);
}

4. 删除

  删除节点的代码:

private AvlNode remove(AvlNode tree, AvlNode z) {
	//根为空或者没有要删除的节点,直接返回null。
	if (tree == null || z == null)
		return null;
	int cmp = z.element.compareTo(tree.element);
	if (cmp < 0) { //待删除的节点在'tree的左子树'中
		tree.left = remove(tree.left, z);
		//删除节点后,若AVL树失去平衡,则进行相应的调节。
		if (height(tree.right) - height(tree.left) == 2) {
			AvlNode r = tree.right;
			if (height(r.left) > height(r.right))
				tree = doubleWithRightChild(tree);
			else
				tree = rotateWithRightChild(tree);
		}
	} else if (cmp > 0) { // 待删除的节点在'tree的右子树'中
		tree.right = remove(tree.right, z);
		// 删除节点后,若AVL树失去平衡,则进行相应的调节。
		if (height(tree.left) - height(tree.right) == 2) {
			AvlNode l = tree.left;
			if (height(l.right) > height(l.left))
				tree = doubleWithLeftChild(tree);
			else
				tree = rotateWithLeftChild(tree);
		}
	} else { // tree是对应要删除的节点。
		// tree的左右孩子都非空
		if ((tree.left != null) && (tree.right != null)) {
			if (height(tree.left) > height(tree.right)) {
			        // 如果tree的左子树比右子树高;
			        // 则(01)找出tree的左子树中的最大节点
			        // (02)将该最大节点的值赋值给tree。
			        // (03)删除该最大节点。
			        // 这类似于用'tree的左子树中最大节点'做'tree'的替身;
			        // 采用这种方式的好处是:删除'tree的左子树中最大节点'之后,AVL树仍然是平衡的。
				AvlNode max = findMax(tree.left);
				tree.element = max.element;
				tree.left = remove(tree.left, max);
			} else {
				// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
				// 则(01)找出tree的右子树中的最小节点
				// (02)将该最小节点的值赋值给tree。
				// (03)删除该最小节点。
				// 这类似于用'tree的右子树中最小节点'做'tree'的替身;
				// 采用这种方式的好处是:删除'tree的右子树中最小节点'之后,AVL树仍然是平衡的。
				AvlNode min = findMin(tree.right);
				tree.element = min.element;
				tree.right = remove(tree.right, min);
			}
		} else {
			AvlNode tmp = tree;
			tree = (tree.left != null) ? tree.left : tree.right;
			tmp = null;
		}
	}
	return tree;
}
public void remove(Comparable key) {
	AvlNode z;
	if ((z = find(key, root)) != null)
		root = remove(root, z);
}

完整的实现

  1.AVLNode节点的实现。

class AvlNode{
	// Constructors
	AvlNode(Comparable theElement) {
		this(theElement, null, null);
	}
	AvlNode(Comparable theElement, AvlNode lt, AvlNode rt) {
		element = theElement;
		left = lt;
		right = rt;
		height = 0;
	}
	// Friendly data; accessible by other package routines
	Comparable element; // The data in the node
	AvlNode left; // Left child
	AvlNode right; // Right child
	int height; // Height
}

   2.AVLTree的实现

public class AvlTree {
	private AvlNode root;// The tree root

	public AvlTree() {
		root = null;
	}

	public void insert(Comparable x) {
		root = insert(x, root);
	}

	public Comparable findMin() {
		return elementAt(findMin(root));
	}

	public Comparable findMax() {
		return elementAt(findMax(root));
	}

	public Comparable find(Comparable x) {
		return elementAt(find(x, root));
	}

	public void makeEmpty() {
		root = null;
	}

	public boolean isEmpty() {
		return root == null;
	}

	public void printTree() {
		if (isEmpty())
			System.out.println("Empty tree");
		else
			printTree(root);
	}

	private Comparable elementAt(AvlNode t) {
		return t == null ? null : t.element;
	}

	private AvlNode insert(Comparable x, AvlNode t) {
		//如上
	}

	private AvlNode findMin(AvlNode t) {
		if (t == null)
			return t;
		while (t.left != null)
			t = t.left;
		return t;
	}

	private AvlNode findMax(AvlNode t) {
		if (t == null)
			return t;
		while (t.right != null)
			t = t.right;
		return t;
	}

	private AvlNode find(Comparable x, AvlNode t) {
		while (t != null)
			if (x.compareTo(t.element) < 0)
				t = t.left;
			else if (x.compareTo(t.element) > 0)
				t = t.right;
			else
				return t; // Match
		return null; // No match
	}

	private void printTree(AvlNode t) {
		if (t != null) {
			printTree(t.left);
			System.out.println(t.element);
			printTree(t.right);
		}
	}

	private static int height(AvlNode t) {
		return t == null ? -1 : t.height;
	}

	private static int max(int lhs, int rhs) {
		return lhs > rhs ? lhs : rhs;
	}

	private static AvlNode rotateWithLeftChild(AvlNode k2) {
		//如上
	}

	private static AvlNode rotateWithRightChild(AvlNode k1) {
		//如上
	}

	private static AvlNode doubleWithLeftChild(AvlNode k3) {
		k3.left = rotateWithRightChild(k3.left);
		return rotateWithLeftChild(k3);
	}

	private static AvlNode doubleWithRightChild(AvlNode k1) {
		k1.right = rotateWithLeftChild(k1.right);
		return rotateWithRightChild(k1);
	}

	private AvlNode remove(AvlNode tree, AvlNode z) {
		//如上
	}
	public void remove(Comparable key) {
		AvlNode z;
		if ((z = find(key, root)) != null)
			root = remove(root, z);
	}
	// Test program
	public static void main(String[] args) {
		AvlTree t = new AvlTree();
		final int NUMS = 4000;
		final int GAP = 37;

		System.out.println("Checking... (no more output means success)");

		for (int i = GAP; i != 0; i = (i + GAP) % NUMS)
			t.insert(new MyInteger(i));

		if (NUMS < 40)
			t.printTree();
		if (((MyInteger) (t.findMin())).intValue() != 1
				|| ((MyInteger) (t.findMax())).intValue() != NUMS - 1)
			System.out.println("FindMin or FindMax error!");

		for (int i = 1; i < NUMS; i++)
			if (((MyInteger) (t.find(new MyInteger(i)))).intValue() != i)
				System.out.println("Find error1!");
	}
}

 构建AVL

  2. 依次添加'3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9' 到AVL树中。

  2.01 添加3,2
  添加3,2都不会破坏AVL树的平衡性。

  2.02 添加1
  添加1之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

  2.03 添加4
  添加4不会破坏AVL树的平衡性。

  2.04 添加5
  添加5之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

  2.05 添加6
  添加6之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

  2.06 添加7
  添加7之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

  2.07 添加16
  添加16不会破坏AVL树的平衡性。

  2.08 添加15
  添加15之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

  2.09 添加14
  添加14之后,AVL树失去平衡(RL),此时需要对AVL树进行旋转(RL旋转)。旋转过程如下:

  2.10 添加13
  添加13之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:

  2.11 添加12
  添加12之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

  2.12 添加11
  添加11之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

  2.13 添加10
  添加10之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:

  2.14 添加8
  添加8不会破坏AVL树的平衡性。

  2.15 添加9
  但是添加9之后,AVL树失去平衡(LR),此时需要对AVL树进行旋转(LR旋转)。旋转过程如下:

  3. 打印树的信息

  输出下面树的信息:


  前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16 
  中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
  后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7 
  高度: 5
  最小值: 1
  最大值: 16

  4. 删除节点8

  删除操作并不会造成AVL树的不平衡。

  删除节点8之后,再打印该AVL树的信息。
  高度: 5
  中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

转载于:https://www.cnblogs.com/wxgblogs/p/5501707.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值