PERT(计划评审技术,Program Evaluation an Review Technique)是20世纪50年代末美国海军部开发北极星潜艇系统时为协调3000多个承包商和研究机构而开发的。其理论基础是假设项目持续时间以及整个项目完成时间是随机的,且服从某种概率分布。PERT可以估计整个项目在某段时间内完成的概率。由于PERT和CPM在项目的进度规划中应用非常广,因此,下面我将通过一个项目实例对此技术加以介绍。

1. 活动的时间估计

PERT对各个项目活动的完成时间按三种不同情况估计:

(1) 乐观时间(Optimistic Time)—— 任何事情都顺利的情况下,完成某项工作的时间;

(2) 最可能时间(Most Likely Time)—— 正常情况下,完成某项工作的时间;

(3) 悲观时间(Pessimistic Time)—— 最不利的情况下,完成某项工作的时间。

PERT认为以上三个估算值服从β分布,因此可算出每个活动的期望ti:



其中:ai表示第i项活动的乐观时间,mi 表示第i项活动的最可能时间,bi表示第i项活动的悲观时间。

根据β分布的方差计算方法,第i项活动的持续时间方差为:



例如,某政府OA系统的建设可分解为需求分析、设计编码、测试、安装部署等四个活动,各个活动顺次进行,没有时间上的重叠,活动的完成时间估计如图2-3所示:



图2-3 OA系统工作分解和活动工期估计

图中每个箭头下给出的3个数字分别代表ai、mi和bi的数值。

则各活动的期望工期和方差为:



2. 项目周期估算

PERT认为整个项目的完成时间是各个活动完成时间之和,且服从正态分布。整个项目完成的时间t的数学期望T和方差σ2分别等于:

标准差为:



据此,可以得出正态分布曲线,如图2-4所示。

因为图2-4是正态曲线,根据正态分布规律,在±σ范围内,即在47.258~54.742天之间完成的概率为68%;在±2σ范围内,即在43.561~58.484天完成的概率为95%;在±3σ范围内,即39.774~62.226天完成的概率为99%。如果客户要求在39天内完成,则可完成的概率几乎为0,也就是说,项目有不可压缩的最小周期,这是客观规律。



图2-4 OA项目的工期正态分布图

通过查标准正态分布表,可得到整个项目在某一段时间内完成的概率。例如,如果客户要求在60天内完成,那么可能完成的概率为:



如果客户要求再提前7天,则完成的概率为:



3. 结语

实际上,大型项目的工期估算和进度控制非常复杂,往往需要将CPM和PERT结合使用,用CPM求出关键路径,再对关键路径上的各个活动用PERT估算完成期望和方差,最后得出项目在某一时间段内完成的概率。

PERT还告诉我们,任何项目都有不可压缩的最小周期,这是客观规律,千万不能不顾客观规律而对用户盲目承诺,否则必然会受到客观规律的惩罚。