A fine property of the non-empty countable dense-in-self set in the real line

A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

 

School of Mathematics and Computer Science,

Gannan Normal University

Ganzhou 341000, P.R. China

 

zhangzujin361@163.com

 

MSC2010: 26A03.

 

Keywords: Dense-in-self set; countable set.

 

Abstract:

Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.

 

1. Introduction and the main result

 

 As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.

 

 We generalize this fact as

Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.

 

Before proving Theorem 1, let us recall several related definitions and facts.

 

Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.

 

A well-known complete set is the Cantor set. Moreover, we have

 

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.

 

Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form

 $$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$

where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.

 

2. Proof of Theorem 1。

Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.

 

Now that $E'$ is complete, we see by Lemma 4,

$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$

For $\forall\ x\in E'$, $\forall\ \delta>0$, we have

 $$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$

By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that

 $$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$

This completes the proof of Theorem 1.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值