构造函数的常见角度【高阶辅导】

前言

在高三数学的函数与导数题材的高考备考中,有时会遇到构造函数的方法,这类题目往往是高考或者模拟训练中的压轴题目,或者选择题的12题,或者填空题的16题,或者解答题的21题,由于题目的求解需要主动构造函数,对数学应用意识和数学思维的要求较高,许多学生碰到就直接放弃,现在我们不妨对构造函数的常见角度做以总结,以期降低这类题目的思考难度。

一、构造案例

例1【2019届宝鸡市高三理科数学质检Ⅰ第16题】已知定义在实数集\(R\)上的函数\(f(x)\)满足\(f(1)=4\),且\(f(x)\)的导函数\(f'(x)<3\),则不等式\(f(lnx)>3lnx+1\)的解集为______。

分析:我们先用整体思想将需要求解的不等式中的\(lnx\)理解为一个整体,这样原不等式就变形为\(f(t)>3t+1\)

此时我们用\(左-右\),做差构造新函数。【为什么这样构造?带着问题继续往下看】

\(g(x)=f(x)-3x-1\),于是\(g'(x)=f'(x)-3\),由已知条件\(f'(x)<3\),则可知\(g'(x)<0\)

这样构造后我们能轻易知道这个函数的单调性,即函数\(g(x)\)\(R\)上单调递减,

\(g(1)=f(1)-3\times 1-1=f(1)-4=0\)

到此我们就完全清楚了所构造的函数的性质,在\(R\)上单调递减,且有唯一的零点为\(x=1\)

故由\(g(x)>0\)可以得到解为\(x<1\),由\(g(x)<0=g(1)\)可以得到解为\(x>1\)

现在\(f(lnx)>3lnx+1\)等价于\(g(lnx)>0\),故得到\(lnx<1\)

解得\(0<x<e\),故解集为\((0,e)\)

解后反思:本题目涉及构造函数的方法,是个难题;为什么这样的题目比较难?原因是平时我们习惯于被动利用题目所给的函数解题,而本题目需要我们主动构造函数,在数学的应用意识上有相当高的要求;在上例中我们发现,只有能充分利用题目所给的条件的构造才是有效的构造,那么我们自然就会问:

①到底怎样的构造才是成功的?

②我们对这类题目应该如何思考?

以下内容主要想回答这两个问题,为了叙述简洁,我们抽取题目中的核心内容,重点回答如何思考和如何构造的问题。

二、选填题中的构造

一般来说,出现在选择题和填空题中的函数构造问题,常涉及用常用两个函数构造,一个来源是题中的抽象函数\(f(x)\),另一个来源是常用基本初等函数中的某一个,比如\(h(x)=x\)\(h(x)=e^x\)\(h(x)=x^2\)\(h(x)=cosx\)等,

  • 角度一、构造积函数\(g(x)=f(x)h(x)\)

①出现形如\(xf'(x)+f(x)\),则构造函数\(g(x)=x\cdot f(x)\) 1

②出现如\(f'(x)+f(x)\),则构造\(g(x)=e^x\cdot f(x)\)

③出现形如\(f'(x)cosx-f(x)sinx\), 构造\(g(x)=f(x)\cdot cosx\)

④出现形如\(xf'(x)+nf(x)\),则构造函数\(h(x)=x^nf(x)\)2

⑤出现形如\(f'(x)+2f(x)\),则构造\(g(x)=e^{2x}\cdot f(x)\)

  • 角度二、构造商函数\(g(x)=\cfrac{f(x)}{h(x)}\)

①出现形如\(xf'(x)-f(x)\), 构造\(g(x)=\cfrac{f(x)}{x}\)

②出现形如\(f'(x)cosx+f(x)sinx\), 构造\(g(x)=\cfrac{f(x)}{cosx}\)

③出现形如\(f'(x)-f(x)\),构造\(h(x)=\cfrac{f(x)}{e^x}\)

④出现形如\(xf'(x)-nf(x)\),构造函数\(h(x)=\cfrac{f(x)}{x^n}\)3

⑤出现形如\(f'(x)-2f(x)\),构造\(g(x)=\cfrac{f(x)}{e^{2x}}\)

  • 角度三、构造和差函数\(g(x)=f(x)\pm h(x)\)

①出现形如\(f'(x)\pm k<0\), 构造\(g(x)=f(x)\pm kx\)

②出现形如\(\sqrt{x}f'(x)<\cfrac{1}{2}\),构造\(g(x)=f(x)-\sqrt{x}\)

③出现形如\(f(x_2)-\cfrac{1}{x_2}\leq f(x_1)-\cfrac{1}{x_1}\),构造\(g(x)=f(x)-\cfrac{1}{x}\)4

④出现形如\(f'(x)<x\),构造函数\(g(x)=f(x)-\cfrac{1}{2}x^2\) 5

⑤出现形如\(m[g(x_1)-g(x_2)]>x_1f(x_1)-x_2f(x_2)\),构造函数\(H(x)=mg(x)-xf(x)\)6

  • 角度四、构造抽象函数

比如对\(\forall x,y\in R\),都有\(f(x+y)=f(x)+f(y)-2\),则构造函数\(f(x)=2\).7

二、解答题中的构造

  • 不等式证明中,常用变量集中策略,将两个自变量作比,转化为一元函数问题,然后做差构造;

例1已知\(x_1>x_2>0\),证明\(lnx_1-lnx_2>2\cfrac{x_1-x_2}{x_1+x_2}\).

解析:令\(\cfrac{x_1}{x_2}=t\),则\(t>1\);又原不等式\(lnx_1-lnx_2>2\cfrac{x_1-x_2}{x_1+x_2}\)

转化为\(ln(\cfrac{x_1}{x_2})>2\cfrac{x_1-x_2}{x_1+x_2}\),再次等价于转化为\(lnt>2\cfrac{t-1}{t+1}\)

然后作差构造函数\(g(t)=lnt-2\cfrac{t-1}{t+1}\),想办法证明\(g(t)>0\)恒成立即可。

\(g'(t)=\cfrac{1}{t}-2\cfrac{1\cdot(t+1)-(t-1)\cdot 1}{(t+1)^2}=\cfrac{1}{t}-\cfrac{4}{(t+1)^2}=\cfrac{(t-1)^2)}{t(t+1)^2}\ge 0\)

故函数\(g(x)\)在区间\((1,+\infty)\)上单调递增,\(g(x)_{min}\rightarrow g(1)=0\)

\(g(x)>0\)在区间\((1,+\infty)\)上恒成立,故原命题得证。

  • 将不等式两端转化为相同结构的形式, 然后构造函数;

例2已知函数\(f(x)=alnx+(x+1)^2\),若图像上存在两个不同的点\(A(x_1,y_1)\)\(B(x_2,y_2)(x_1>x_2)\),使得\(f(x_1)-f(x_2)\leq 4(x_1-x_2)\)成立,则实数\(a\)的取值范围是多少?

分析:将\(f(x_1)-f(x_2)\leq 4(x_1-x_2)\)转化为\(f(x_1)-4x_1\leq f(x_2)-4x_2\)

\(g(x)=f(x)-4x=alnx+(x-1)^2\),则原题转化为存在\(x_1>x_2,g(x_1)\leq g(x_2)\)成立,

即就是\(x>0\)时,\(g(x)\)有单调递减区间或\(g(x)\)为常函数;即就是\(x>0\)时,\(g'(x)\leq 0\)有解,

\(g'(x)=\cfrac{a}{x}+2x-2\leq 0\)有解,分离参数即得\(a\leq -2x^2+2x\)对于\(x>0\)能成立,即求解\(-2x^2+2x=g(x)\)\(x>0\)上的最大值。

\(g(x)=-2x^2+2x=-2(x-\cfrac{1}{2})^2+\cfrac{1}{2}\leq \cfrac{1}{2}\)

\(g(x)_{max}=\cfrac{1}{2}\),故\(a \leq \cfrac{1}{2}\),也即\(a\in(-\infty,\cfrac{1}{2}]\).

  • 含有绝对值的不等式,先利用单调性去掉绝对值符号,再将不等式两端转化为相同结构的形式, 然后构造函数;

例3已知函数\(f(x)=alnx+x^2(a\in R)\),若\(a>0\),且对\(\forall x_1,x_2 \in [1,e]\),都有\(|f(x_1)-f(x_2)|\leq |\cfrac{1}{x_1}-\cfrac{1}{x_2}|\),求实数\(a\)的取值范围。

解析:\(a>0\)时,\(f'(x)=\cfrac{a}{x}+2x>0\)

即函数\(f(x)\)\(x\in [1,e]\)上单增,又函数\(y=\cfrac{1}{x}\)\(x\in [1,e]\)上单减,

不妨设\(1\leq x_1<x_2\leq e\)

\(|f(x_1)-f(x_2)|\leq |\cfrac{1}{x_1}-\cfrac{1}{x_2}|\)等价于\(f(x_2)-f(x_1)\leq \cfrac{1}{x_1}-\cfrac{1}{x_2}\)

\(f(x_1)+\cfrac{1}{x_1}\ge f(x_2)+\cfrac{1}{x_2}\)\(x\in [1,e]\)上恒成立,

\(g(x)=f(x)+\cfrac{1}{x}=alnx+x^2+\cfrac{1}{x}\)

则原命题等价于函数\(g(x)\)在区间\(x\in [1,e]\)上单调递减,

所以\(g'(x)=\cfrac{a}{x}+2x-\cfrac{1}{x^2}\leq 0\)\(x\in [1,e]\)上恒成立;

分离参数得到\(a\leq \cfrac{1}{x}-2x^2\)\(x\in [1,e]\)上恒成立;

\(h(x)=\cfrac{1}{x}-2x^2\)\(x\in [1,e]\)上单调递减,

\(h(x)_{min}=h(e)=\cfrac{1}{e}-2e^2\);所以\(a\leq \cfrac{1}{e}-2e^2\)

又由题目可知\(a>0\),故\(a\in \varnothing\)。即满足条件的实数\(a\)不存在。


  1. 为什么这样构造,只需要我们对\(g(x)\)求导,就可以回答这个问题,\(g'(x)=f(x)+xf'(x)\),如果题目还给定条件\(xf'(x)+f(x)>0\),则我们自然能得到\(g'(x)=f(x)+xf'(x)>0\),即构造的新函数是单调递增的,这样就可以利用单调性解决相应的问题了;其他同理。

  2. 比如:已知在\((0,+\infty)\)\(f'(x)<x\),则我们构造函数\(g(x)=f(x)-\cfrac{1}{2}x^2\)

  3. \(xf'(x)-3f(x)>0\),构造\(g(x)=\cfrac{f(x)}{x^x}\)

  4. 比如,已知函数\(f(x)\)单调递减,证明\(|f(x_1)-f(x_2)|\leq |\cfrac{1}{x_1}-\cfrac{1}{x_2}|\),常先定义\(x_1>x_2\in D\),则原不等式等价转化为\(f(x_2)-f(x_1)\leq \cfrac{1}{x_2}-\cfrac{1}{x_1}\),再转化为\(f(x_2)-\cfrac{1}{x_2}\leq f(x_1)-\cfrac{1}{x_1}\),然后构造\(g(x)=f(x)-\cfrac{1}{x}\),想法证明\(g(x)\)单调递增。

  5. 比如:已知在\((0,+\infty)\)\(f'(x)<x\),则我们构造函数\(g(x)=f(x)-\cfrac{1}{2}x^2\)

  6. \(f(x)=lnx,g(x)=\cfrac{1}{2}x|x|\),任意\(x_1,x_2\in [1,+\infty)\),且\(x_1>x_2\),都有\(m[g(x_1)-g(x_2)]>x_1f(x_1)-x_2f(x_2)\)恒成立,求实数\(m\)的取值范围; 此时构造函数\(H(x)=mg(x)-xf(x)\),想法子证明函数\(H(x)\)\([1,+\infty)\)上单调递增,借此求出\(m\)的取值。题解见例8

  7. 分析:由\(f(x+y)=f(x)+f(y)-2\),令\(x=y=0\),得到\(f(0)=2\);再令\(y=-x\),得到\(f(0)=f(x)+f(-x)-2\),即\(f(x)+f(-x)=4\),故函数\(f(x)\)关于点\((0,2)\)对称,故构造函数\(f(x)=2\)或者函数\(f(x)=kx+2\)或者函数\(f(x)=kx^3+2\),都是满足题目条件的,当然其中最简单的就是\(f(x)=2\)

转载于:https://www.cnblogs.com/wanghai0666/p/9358088.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值