-
mongoDB 默认是行级并发,我们希望多行并发读写互不影响,但是我们又希望对在dropCollection时,不能有任何对表的读写在操作,这个“不希望”也是双向的,即在对表并发读写时,我们也不希望dropCollection在操作。
在执行dbStats命令时,希望和dropDB/insert命令互斥,但是又不影响对表的并发读。
由于写每个db的每张表,都须要往oplog中写记录,因此oplog是全局的,我们希望在truncate oplog这个全局操作在进行时,任何db对oplog的写操作都被阻塞。
第一个例子中,我们似乎用传统的rwlock就可以解决,在对表进行并发读写前,加rlock,在对表进行dropCollection前,加wlock。 暂不论rwlock的r状态和并发写的行为不一致,至少这样是行得通的。 可是遇到了第二个例子,我们发现rwlock的rw两个状态无法表达我们的锁需求了,到了第三个例子,只要能隐约觉得,这个锁,还得有层级结构。
而意向锁协议,是一种对树形(层级)资源进行并发控制的协议。它由"操作约定"和"冲突矩阵"两部分组成,且看下文。
02
MongoDB中的意向锁的定义
MongoDb使用了简化版的意向锁协议,抛却了SIX状态,保留了 IS/IX/S/X四种锁状态。其冲突矩阵为:
其使用方式为:
-
对一个节点加IX/X锁时,必须先(递归)获取其父节点的IX锁。
-
对一个节点加IS/S锁时,必须先(递归)获取其父节点的IS锁。
举个例子:MongoDB中的资源层级结构如下:
在对Collection2中的记录进行读操作时,需要先获得其IS锁。因此先递归获得其父节点Global的IS锁。
此时,如果执行对Db2的drop操作,则需要获得Db2的X锁,由于Db2 目前处于IS锁状态,且IS锁与X锁互斥,因此锁无法立即获得。
此时,如果执行对collection2的记录的写操作,则需要获得Global的IX锁,Db2的IX锁,Collection2的IX锁,从根节点一路下来,IX与IS状态互不冲突,因此加锁成功。如下图:
通过上述的例子,我们可以发现,意向锁的设计较为简洁,仅仅通过一个矩阵(冲突矩阵),两条原则(递归加锁)就可以满足数据库系统中对资源的并发控制的需求。
03
Mongo中意向锁的实现
虽然意向锁的设计非常简洁,但是理论和工程实践上,我们至少还要考虑如下几点:
-
一个高并发读写的db中,IS/IX锁源源不断的加上来,且相互不冲突,在这种条件下,如何避免X锁的饿死。
-
如何避免死锁。
带着这两个问题,我们分析mongoDB 意向锁的实现。 整体结构 mongoDB中的意向锁实现主要在 lockmanager.cpp/lockstate.cpp两部分。一个简化的意向锁的原语可以用如下两条语句来表达。
比如,我们想要给DB加上X锁,就可以执行 (newLockObject).lock("mydb", MODE_X)。
其整体结构如下图所示:
BucketArray
上图中,意向锁划分为128个元素的BucketsArray, BucketsArray可以无锁访问,一个lock(ResourceId, LockMode)操作,首先通过Hash(ResourceId)%128 找到对于的bucket,这一步无锁操作非常重要,充分利用了不同ResourceId的无关性,使得意向锁模块具备水平扩展性。
Bucket
每个Bucket是ResourceId->LockHead的哈希表。该哈希表被Bucket对象中的mutex保护。
LockHead
LockHead是对应于某个ResourceId的锁对象。LockHead维护着所有对该ResourceId的锁请求。LockHead由ConflictList和GrantList组成。ConflictList是该锁的等待队列, GrantList是持有锁的对象链表。
思考与尝试
上面我们分析了MongoDB中意向锁的结构图,假设我们现在对db1加了大量的IS锁,现在我们要对db1加IX锁,为了检查IX锁是否和GrantList冲突,需要对GrantList进行遍历进行冲突检测,这样做是不高效的。
引用计数数组
为了解决这个问题,MongoDB为GrantList和ConflictList增加了引用计数数组。在将一个对象增加到GrantList中时,顺带对grantedCounts[mode] 累加,如果grantedCounts[mode]是从0到1的变化, 则将grantedModes对应的bitMask设置为1。 从GrantList中删除对象时,是一个逆向的对称操作。这样,在判断某个模式是否与GrantList中已有对象冲突时,可以通过对grantedModes和待加节点的mode进行比较,将时间复杂度从O(n)降到O(1)。
避免饿死
一个锁请求,如果和GrantList无冲突,就将其添加到GrantList中,并加锁成功,否则就加到ConflictList中,并等待grantedModes变更时,从ConflictList中选择一批与grantedModes兼容的加锁请求进入GrantList。 这是很显然的调度策略。不过这个调度策略无法避免一个问题,如果ConflictList中有X锁在等待,而GrantedList中的IS/IX锁源源不断的进来,那么X锁就一直得不到调度。
为了解决这个问题,MongoDB中为加锁操作增加了compatibleFirst参数。
该参数的作用机制如下代码诠
1. 如果锁请求与该锁目前的grantModes冲突,则进入等待,这一点毫无疑问。
2. 207行可以看到如果请求与grantModes不冲突,也未必能加锁成功,还要检验锁资源上的compatibleFirstCount, 该变量可以解释为:锁资源的GrantList中compatibleFirst=true的属性的锁请求的元素的个数。如果GrantList中无compatibleFirst的锁请求,且conflictList非空(有等待的锁请求),则将请求加入到conflictList中。
3. 如果获锁成功,则将锁请求加入到GrantList中,并累加锁资源的compatibleFirstCount计数器。
上述第二点,实则提供了等待优先级的概念。如果所有锁请求的compatibleFirst都为false,则上述算法则可以简述成如下更直接,更容易理解的防饿死控制:
-
和grantedModes冲突,则进入等待。这一点毫无疑问。
-
和grantedMode不冲突,但和conflictModes冲突,依然进入等待,这一点防止了饿死。
而mongoDB引入的compatibleFirst属性,可以理解为对该简化版模型的一个优化,引入了等待优先级,而且将优先级的设置暴露给了意向锁的使用者。在mongoDB中,只有Global的S/X锁设置了compatibleFirst=true,其解释如下:
04
死锁检测
MongoDB意向锁的死锁检测基于广度优先遍历(BFS)算法。某个锁请求是否会产生死锁,等价于 “从有向图中的一点出发,是否可以找到一个环”。如何使用BFS算法找有向图的环,不在本文的讨论范围内。在将死锁检测规约为成环问题的过程中,如何构图是关键,如何描述"点",点与点的依赖关系(边)是什么?读者不妨先自行思考一下。
死锁检测的构图
MongoDB中,一个锁依赖图 G=(V, E), Vi = (Request, Resource, Mode), 即图中的一个点的含义为对某个资源的某种模式的锁请求,一个点Vi对另一个点Vj有依赖 当且仅当 Vj 持有 Vi.Resource的锁,且锁模式与Vi.Mode冲突,且Vj 本身也在等待其他资源。概念有点绕,举个例子。
上图中,有三个Lock,分别为Lock1, Lock2, Lock3,Lock1当前持有Res1,在等待Res2, Lock2当前持有Res2,在等待Res3,Lock3 当前持有Res3,在等待Res1。很明显死锁了,但是如何将其转化为有向图,使得计算机能帮我们检测死锁呢。
我们从Lock1 Acquire Res2来看, 由于Res2被Lock2持有,所以Lock1 Acquire Res2 依赖 Lock2 Release Res2。 而Lock2 Release Res2 依赖 Lock2 Acquire Res3, Lock2 Acquire Res3 依赖 Lock3 Release Res3。 如下图所示:
图中Release动作的依赖并不是必须的,可以简化成:
在工程实践中,可以通过GrantList判断某个资源是否被某个锁持有。核心代码如下:
-
代码框架上,使用_queue进行BFS的迭代。
-
979行迭代ResourceId对于的Lock的GrantList,如果某个GrantList中的元素也有依赖的Resource,则将其入队。
-
970行检查node是否为初始入队元素。根据BFS的性质判断是否成环。