转载-找圆算法((HoughCircles)总结与优化-霍夫变换

原文链接: http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096
 
找圆算法((HoughCircles)总结与优化


    Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆;反观拟合圆算法,单纯的拟合结果容易受噪声点的影响,且不支持一个输入中找多个圆
缺点:原始的Hough变换找圆,计算量很大,而且如果对查找圆的半径不加控制,不但运算量巨大,而且精度也不足,在输入噪声点不多的情况下,找圆效果远不如拟合找圆;为了提高找圆精度,相比拟合法,需要提供更多的参数加以控制,参数要求比较严格,且总体稳定性不佳
    OpenCV内的HoughCircles对基础的Hough变换找圆做了一定的优化来提高速度,它不再是在参数空间画出一个完整的圆来进行投票,而只是计算轮廓点处的梯度向量,然后根据搜索的半径R在该梯度方向距离轮廓点距离R的两边各投一点,最后根据投票结果图确定圆心位置,其示意图如图1
<ignore_js_op>

理想情况.jpg (92.77 KB, 下载次数: 273)

下载附件

理想情况

2015-1-29 23:21 上传

 

图1是比较理想的情况,轮廓点1-6的梯度方向都经过了点7,因此都给点7投了一票,点7得分最高,也正是我们所要找的圆心;同时由此可以看出基于参数空间投票法来确定圆心,8-12点就算有投票,但由于投票太散,对整个投票结果也几乎不存在干扰,因而其天生抗干扰能力要比拟合法好
不过在这种思想优化下,也存在致命的缺陷,如图2:
<ignore_js_op>

实际情况.jpg (88.32 KB, 下载次数: 219)

下载附件

实际情况

2015-1-29 23:35 上传

 



实际情况是该点算出的梯度方向其实总是有误差的,有时因为图像原因或结构原因,偏差甚至超过30度;图2中由于梯度方向不精确,7点基本没有获得投票,反而不如ABC点。因此实际使用中HoughCircle的效果并没有想象中的理想,情况往往如下列所述:
(参与投票的轮廓点如图3的右图,噪点非常多,比想要查找的轮廓本身还多,而且断断续续的,显然这种情况拟合法不适用)
1、半径范围限定不好时,如图3,可能找到的圆非常多且杂乱无章
<ignore_js_op>

半径限制不好.jpg (86.03 KB, 下载次数: 173)

下载附件

2015-1-29 23:37 上传

 

<ignore_js_op>

轮廓图.jpg (211.98 KB, 下载次数: 140)

下载附件

2015-1-30 00:01 上传

 


2、在此情况下,如果只输出一个圆(Opencv的HoughCircle会默认按照投票结果的累加值排序,最好的圆是这样的,竟然差这么多
<ignore_js_op>

默认最好的圆.jpg (60.4 KB, 下载次数: 187)

下载附件

半径没限定默认最好圆

2015-1-29 23:38 上传

 



3、假设我们找的东西的半径我们是知道的,变化不大(+-8%),现在限定下半径。。。找出的排的靠前的圆是这样的;再看下默认最好的圆。。。
<ignore_js_op>

限制了半径范围.jpg (79.7 KB, 下载次数: 166)

下载附件

限定了半径范围

2015-1-29 23:37 上传

 

<ignore_js_op>

限定半径后默认最好的圆.jpg (60.71 KB, 下载次数: 155)

下载附件

2015-1-29 23:45 上传

 

半径好像接近了一点,还是好坑爹啊。。。

4、常规来说,使用该函数的时候,为避免找到太多的几乎重合的圆,找圆的最小距离都设在一个比较合理的值(比如大于半径1/5),这样在找多个圆的时候,就不会找出太多重合的圆了;不过这里我试下不限制最小距离,如下,默认排序下得分最高的几个圆如左图:
<ignore_js_op>

限定半径开放最小距离.jpg (64.06 KB, 下载次数: 181)

下载附件

限定半径开放圆距离

2015-1-29 23:47 上传

 

<ignore_js_op>

限定半径开放最小距离最好圆.jpg (58.64 KB, 下载次数: 173)

下载附件

限定半径开放圆距离最好圆

2015-1-29 23:48 上传

 

貌似默认最好的圆并没有任何改善

    很多初次使用该函数的看到这,或许就就觉得HoughCircles效果不咋地。。。本人刚开始使用时也感觉Opencv提供的这个算法太不稳定了,只能对某一个图调出相对好一点的效果,换一个图或者只改动其中某一个参数,找出来的圆就不知道跑哪去了,而且变化太大了。。。
    观察细心的可能发现了,第4步中的左图找出的众多圆其实已经比前面找出的圆靠谱很多了,而且这么多圆必定有一个圆就是我想要找的圆,只是按照投票分数排序下,最好的圆偏差较大。
    但究其算法优化本身,轮廓梯度定位出来的圆心投票本来精度就低(如图2),自然找出来的圆会有很多是错误的,但如果轮廓点足够多,找出的正确的圆必定也是存在的,只是按照票数方法来评价可能排序会比较靠后,但毕竟也是出现了的;此处只需做个小小的优化,改下评价方法,优化下排序,结果就很接近了
    <ignore_js_op>

最终优化结果.jpg (60.1 KB, 下载次数: 190)

下载附件

最终优化结果

2015-1-30 00:15 上传

 

这是经过优化排序方法后找出的最好的圆
    找出来的圆中与实际轮廓重合度最高的圆一般就是我们要找的圆;因此我们可以通过HoughCircles来找出一批差不多的圆(如步骤4),然后画出这些圆,和实际轮廓比对一下,按实际重合像素的总数排序,这时分数最高的圆就如上面的结果图!HoughCircles优化一下还是很给力的!

    附件为本算法优化源码,有兴趣的可以一起来进一步优化(qq:970117454)
    注:如果编译通过,但运行时崩溃,通常原因是库版本不对!一般OpenCV官方给出的库版本分x86,x64,而每个平台下又有vc10,vc11,vc12,分别对应VS2010,VS2012,VS2013;其下还分debug版和release版,必须严格与编译环境和使用的配置相对应,否则会在运行过程中出错,且非常不好排查原因
     另该优化目前只能做到减少HoughCirlcles找错圆且错的比较离谱的几率,但无法真正提高精度,找出来的圆与实际圆稍有偏差还是有可能的;若需要高精度定位,建议采用该方法做粗定位,采用拟合圆做精定位(类似各商业算法中的环形区域找圆)

转载于:https://www.cnblogs.com/6-6-8-8/p/9077289.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值