Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$

则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部分恰为$\psi_{n}(z)$.

 

Weierstrass因子分解定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,则必存在$D$上的全纯函数$f(z)$使得$f$以$\{a_{n}\}$为其零点集,且每个零点$a_{n}$的阶数恰为$k_{n}$.

 

插值定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列多项式$$P_{n}(z)=\sum_{j=0}^{k_{n}}c_{n,j}(z-a_{n})^j$$,则必存在$D$上的全纯函数$f(z)$使得$f$在每个$a_{n}$处的Taylor级数的前$k_{n}+1$项恰为$P_{n}(z)$.换言之恒有$$\frac{f^{(j)}(a_{n})}{j!}\equiv c_{n,j},j=0,1,\cdots,k_{n}.$$

转载于:https://www.cnblogs.com/qq3232361332/p/4876141.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值