单调有界定理适用于函数吗_多复变函数论(一): 从单复变到多复变

c8677200d7db46637ec4818960d471b7.png

本文及接下来一系列题为《多复变函数论》的文章是 2020 年秋季学期作者在清华大学开设的同名讨论班的讲义.

更新: 因为讨论班不打算继续开了, 所以将余下部分已写好的讲义一并发出.


温故而知新. 在这一节中, 我们选择性地回顾若干单复变函数论中的问题与方法, 并尝试将其推广至多复变函数.

多复变函数论研究的是多元全纯函数. 仿照一元情形, 我们有

定义

是开集. 称
全纯, 若
满足
Cauchy–Riemann 方程
. 记
上全纯函数的空间为
.

这个定义中

的条件是不必要的, 它可以在两种互不包含的意义下放宽. 其一是仅假设
各偏导存在, 且
作为经典导数逐点成立. 下面将证明的 Hartogs 定理断言这推出
. 其二是假设
是分布, 且
作为弱导数成立. 由于
是椭圆算子, 标准的椭圆正则性理论直接推出
.

有了全纯的概念后, 我们便可以谈论复流形及其间的全纯映射等等, 这些定义是显然的, 不再赘述. 另外, 为方便起见, 我们将不加说明地使用复几何中的标准记号, 例如

.

Cauchy 积分表示

单复变中全纯函数的许多基本性质都是 Cauchy 积分公式的直接推论. 同样的结论与证明也适用于多元函数.

定理 (Cauchy–Pompeiu 积分公式)

是有界开集,
简单闭曲线,
, 则

上对
用 Stokes 公式, 再令
.

全纯时, 此即通常的 Cauchy 积分公式. 另一方面, 它也给出了一元非齐次 Cauchy–Riemann 方程的解的构造.

推论 (一元

-Poincaré 引理)
在分布意义下
. 换言之, 对
, 定义

.

换元

, 在积分号下求导, 再在足够大的圆盘上用 Cauchy–Pompeiu 积分公式.

在多复变中, 对多元函数各分量应用 Cauchy 积分公式即得其多元版本. 为此我们需要多圆盘的概念.

定义 开多圆盘指形如

的区域, 其中
. 其
特殊边界定义为
. 注意通常
.

推论 (Osgood 引理)

是开集,
, 则

由此立得一系列全纯函数的基本性质, 它们的证明与一元情形完全类似, 故略去. 下设

是开集.

推论 开多圆盘上全纯函数在中心处的 Taylor 级数展开绝对收敛到它自己. 特别地, 全纯

解析, 即局部可写成绝对收敛的幂级数
, 其中
.

推论 (恒等定理, 解析延拓的唯一性)

连通,
在非空开子集上相等, 则
.

推论 (极大模原理)

连通,
,
上取得极大值, 则
是常数.

推论 (Cauchy 不等式)

, 则

推论 (Liouville)

上的有界全纯函数必为常数.

推论

拓扑与
拓扑相同. 特别地,
中闭.

注意

拓扑和
拓扑几乎分别是函数空间上能给的最粗糙和最精细的拓扑, 而位于二者之间的函数空间拓扑在
上都相同, 例如任意 Соболев 范数拓扑. 这当然是
的椭圆正则性的体现. 我们赋予
该拓扑, 从而它具有 Fréchet 空间的结构.

推论 (Montel)

是 Montel 空间, 即它满足 Heine–Borel 性质, 即有界闭
紧.

作为 Cauchy 积分表示的另一应用, 我们证明多元

-Poincaré 引理, 它也称为 Dolbeault–Grothendieck 引理.

定理 (Dolbeault–Grothendieck 引理)

,
. 换言之, 若
满足
, 则存在
使
.

先证对

, 存在
使得在
. 乘以在
的截断函数后, 不妨设
紧支. 归纳地, 设
, 其中
只含有
. 定义

即对

的每个系数关于第
个分量应用一元
-Poincaré 引理的构造. 考虑
. 对
,
, 故
, 这里
表示对第
个分量作用
. 由一元
-Poincaré 引理,
. 因此
, 其中
只含有
. 对
继续这样做即得
.

取一列

. 对每个
, 取
使得在
. 于是
. 由幂级数展开, 可取
使得
. 则
即为所求.

该证明后半部分的逼近方法是复变的常用技术, 以后会见到其一般形式.

多次调和函数

定义

是开集. 称
次调和, 若
上半连续, 且

上次调和函数的空间为
.

定义

是开集. 称
多次调和, 若
上半连续, 且
限制在每条复线与
的交上均是次调和的. 记
上多次调和函数的空间为
.

可类似定义

中开集上的次调和函数, 其基本理论与
上的相同. 由于我们不会用到这些函数, 故不详细讨论, 仅仅指出
, 即多次调和函数是一类适用于多复变的特殊的次调和函数.

我们不加证明地胡乱罗列一些基本性质. 证明见 [Demailly] 与 [Hörmander].

命题

是开集,
上半连续. 下述等价于
次调和:

(1)
,
,
上调和, 在
.

(2)
,
, 在
.

(3)
,
.

(4)
,
.

(5) ... (其余等价刻画略)

命题

是开集. 若
, 则
(作为 Hermite 矩阵). 一般地,
在分布意义下成立.

命题 次调和函数在连通分支上要么

要么
.

命题

是开集,
, 则
处处成立, 其中
为任意标准磨光子. 特别地, 若
几乎处处相等, 则
.

命题

是开集.

(1) 若
,
, 则
.

(2) 若
上半连续, 则
.

(3) 若
,
, 则
.

(4) 若
,
凸且关于各分量递增, 则
.

, 则
.

这是全纯与次调和的一个重要联系. 我们给出两个证明. 只需证明一元情形.

证 1 这由 Jensen 公式直接推得: 若

, 记
中的零点, 则

证 2

,
. 用极大模原理.

一个有趣的推论是, 若

, 则
的零点集零测, 因为
.

Hartogs 分别全纯定理

作为次调和函数的应用, 我们证明前文提到的

定理 (Hartogs)

是开集,
各偏导存在且
, 则
解析.

关于各分量全纯, 简称为
分别全纯. 这个定理就是说分别全纯
全纯. 注意我们甚至不假设
连续. 事实上, 若假设连续, 则证明十分容易.

步骤 1 局部有界 + 分别全纯

解析.

证 1 回忆 Osgood 引理. 由于

关于各实分量连续,
Borel 可测. 又
局部有界, 故 Osgood 引理中右边积分作为 Lebesgue 积分绝对可积. 因此通常的全纯
解析的证明依然适用, 即该积分表示推出
有幂级数展开.

证 2

. 对每个
, 右边的第
项是
的全纯函数, 它在
附近有界, 且
时取
. 由单复变中的 Schwarz 引理, 它
. 故
局部 Lipschitz 连续, 从而 Osgood 引理中右边积分作为 Riemann 积分可积. 其余同证 1.

如何得到有界? 答案是用 Baire 纲定理. 对

归纳. 单复变中的 Goursat 定理推出
的情况. 假设结论对
维成立. 下面记
,
等, 其中
表示前
个分量的部分.

步骤 2

上分别全纯, 则对任意
, 存在非空开集
使得
上有界.

的情形,
关于
连续, 故
. 由归纳假设,
关于前
个分量连续, 故上式左边均为闭集. 用 Baire 纲定理.

下面的目标是由此推出

在整个
上解析, 做法是对其幂级数展开的系数应用次调和函数的如下性质. 这是该证明的核心.

引理 (Hartogs)

是开集,
局部有一致上界. 若在
, 则
,
,
使
,
.

使得
. 由于
局部有一致上界, 不妨设
,
. 任取
. 由 Fatou 引理,
. 取
使得
,
. 由平均值不等式及
, 对
,
,
, 有
, 故
. 不妨设
, 则可取
使得上式右边
. 用有限个
覆盖
, 取对应
即得欲证.

该引理对

中开集上的次调和函数也成立, 证明相同.

步骤 3

,
上分别全纯, 在
上解析, 则
上解析, 这里
.

任取

. 设
的幂级数展开为
. 由 Cauchy 不等式,
, 故
上有一致上界. 对
, 该幂级数在
上绝对收敛, 故
, 故在
. 对
应用引理, 得
使
,
. 这说明该幂级数在
上绝对收敛. 令
, 即得
上解析.

定理的证明 留作习题.

Cousin 问题初探

单复变中有两个关于全纯函数的存在性的重要定理:

定理 (Mittag-Leffler)

是开集,
局部有限. 对每个
, 任取
, 则存在
使得
在每个
附近的主部为
, 且
上全纯.

定理 (Weierstraß)

是开集,
局部有限. 对每个
, 任取
, 则存在
使得
在每个
处的阶为
, 且
.

如何将其推广至多元情形? 尽管我们还未定义多元亚纯函数, 但不难想象, 多元亚纯函数的局部行为不再能被主部或阶这样的概念刻画. 因此, 我们先将问题转述为更适合多元理论的形式. 这里合适的语言是层的 Čech 上同调.

先看 Mittag-Leffler 问题. 考虑

的开覆盖
, 其中对
,
的小邻域, 而
. 令
,
, 则
, 且
定义了层上同调类
. 若该上同调类平凡, 即存在
使得
,
, 则
拼接成所要的亚纯函数. 反之依然. 因此, 该 Mittag-Leffler 问题有解
该上同调类平凡. 这样表述的 Mittag-Leffler 问题可以直接搬到多元情形, 此即

问题 (第一 Cousin 问题)

是复流形,
的开覆盖,
使得
. 是否存在
使得
?

由上述讨论立得

命题 上述第一 Cousin 问题可解

. 特别地, 若
, 则
上所有第一 Cousin 问题可解.

对 Weierstraß 问题有类似的讨论.

问题 (第二 Cousin 问题)

是复流形,
的开覆盖,
使得
. 是否存在
使得
?

命题 上述第二 Cousin 问题可解

. 特别地, 若
, 则
上所有第一 Cousin 问题可解.

一般地, 多复变中证明层上同调消失的最强大的工具是著名的

定理 (Cartan 定理 B)

是 Stein 空间,
上的凝聚解析层, 则
,
.

这个讨论班的目标之一就是证明这个定理.

参考文献

本讲义的所有内容均来自所列参考文献, 只是证明有时略有不同. 文献按相关性排序.

L. Hörmander: An Introduction to Complex Analysis in Several Variables
J.-P. Demailly: Complex Analytic and Differential Geometry

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值