一个函数证明题

函数$f(x)$在$[0,+\infty)$上二阶可导,$f^{'}(0)≥0$, $f(0)≥0$ ,$f^{''}(x)≥f(x)$.则$f(x)≥f(0)+f^{'}(0)x$.

证.(Hansschwarzkopf ) 令$D=\frac{d}{dx}$, 则$D^2=\frac{d^2}{dx^2}$,

\[f''(x)-f(x)=(D^2-I)f(x)=(D-I)(D+I)f(x)\geqslant 0.\]
令$u(x)=(D+I)f(x)$, 则$u(0)=f'(0)+f(0)\geqslant 0$, 且$(D-I)u(x)\geqslant 0$. 即
\[e^xD(e^{-x}u(x))\geqslant 0.\]

故\[e^{-x}u(x)\geqslant u(0)\geqslant 0.\] 

 所以\[(D+I)f(x)\geqslant 0,\]

即\[e^{-x}D(e^xf(x))\geqslant 0.\]

从而\[e^xf(x)\geqslant f(0)\geqslant 0.\]

即\[f(x)\geqslant 0.\]  

故\[D^2f(x)\geqslant f(x)\geqslant 0.\]

 

因此
\[f(x)=f(0)+f'(0)x+\frac{f''(\theta x)}{2}x^2\geqslant f(0)+f'(0)x,\ \forall x\geqslant 0.\]

 

http://www.math.org.cn/forum.php?mod=viewthread&tid=37034&extra=page%3D1

转载于:https://www.cnblogs.com/zhangwenbiao/p/7069602.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值