反函数求导习题

本文解析了两个反函数求导实例,一是求y=tan(ax)的反函数导数,二是求y=x+e^x的反函数导数。通过详细步骤展示了如何利用反函数性质及基本求导法则来解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反函数求导

例1

求函数 y = tan ⁡ a x y=\tan ax y=tanax的反函数 x = x ( y ) x=x(y) x=x(y)的导数。

解:
∵ \qquad \because 函数 y = tan ⁡ a x y=\tan ax y=tanax严格单调递增且可导

\qquad y ′ = a cos ⁡ 2 a x y'=\dfrac{a}{\cos^2 ax} y=cos2axa

∴ x = x ( y ) \qquad \therefore x=x(y) x=x(y)可导

x ′ ( y ) = 1 y ′ ( x ) = c o s 2 a x a \qquad x'(y)=\dfrac{1}{y'(x)}=\dfrac{cos^2ax}{a} x(y)=y(x)1=acos2ax

∵ cos ⁡ 2 a x ( 1 + tan ⁡ 2 a x ) = cos ⁡ 2 a x + sin ⁡ 2 a x = 1 \qquad \because \cos^2ax(1+\tan^2 ax)=\cos^2ax+\sin^2 ax=1 cos2ax(1+tan2ax)=cos2ax+sin2ax=1

∴ cos ⁡ 2 a x = 1 1 + tan ⁡ 2 a x \qquad \therefore \cos^2ax=\dfrac{1}{1+\tan^2 ax} cos2ax=1+tan2ax1

∴ x ′ ( y ) = cos ⁡ 2 a x a = 1 a + a tan ⁡ 2 a x = 1 a + a y 2 \qquad \therefore x'(y)=\dfrac{\cos^2ax}{a}=\dfrac{1}{a+a\tan^2 ax}=\dfrac{1}{a+ay^2} x(y)=acos2ax=a+atan2ax1=a+ay21


例2

求函数 y = x + e x y=x+e^x y=x+ex的反函数 x = x ( y ) x=x(y) x=x(y)的导数。

解:
∵ \qquad \because 函数 y = x + e x y=x+e^x y=x+ex严格单调递增且可导

\qquad y ′ = 1 + e x y'=1+e^x y=1+ex

∴ x ′ ( y ) = 1 y ′ ( x ) = 1 1 + e x \qquad \therefore x'(y)=\dfrac{1}{y'(x)}=\dfrac{1}{1+e^x} x(y)=y(x)1=1+ex1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值