【352】矩阵转置性质

参考:矩阵转置 - Wikipedia

对于矩阵 $A$, $B$ 和标量 $c$ 转置有下列性质:

$${\displaystyle \left(A^{\mathrm {T} }\right)^{\mathrm {T} }=A\quad }$$

转置是自身逆运算。

$${\displaystyle (A+B)^{\mathrm {T} }=A^{\mathrm {T} }+B^{\mathrm {T} }}$$

转置是从 $m × n$ 矩阵的向量空间到所有 $n × m$ 矩阵的向量空间的线性映射。

$${\displaystyle \left(AB\right)^{\mathrm {T} }=B^{\mathrm {T} }A^{\mathrm {T} }}$$

注意因子反转的次序。以此可推出方块矩阵 $A$ 是可逆矩阵,当且仅当 $A^T$ 是可逆矩阵,在这种情况下有 $(A−1)^T = (AT)^{−1}$。相对容易的把这个结果扩展到矩阵相乘的一般情况,可得出:

$$(ABC...XYZ)^T = Z^TY^TX^T...C^TB^TA^T$$

$${\displaystyle (cA)^{\mathrm {T} }=cA^{\mathrm {T} }}$$

标量的转置是同样的标量。

$${\displaystyle \det(A^{\mathrm {T} })=\det(A)}$$

矩阵的转置矩阵的行列式等于这个矩阵的行列式。

两个纵列向量a和b的点积可计算为

$${\displaystyle \mathbf {a} \cdot \mathbf {b} =\mathbf {a} ^{\mathrm {T} }\mathbf {b}}$$

 

转载于:https://www.cnblogs.com/alex-bn-lee/p/10297873.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值