几何概型习题

有空整理4、6、7、8、9、10、15

$A.\cfrac{1}{2}$ $B.\cfrac{1}{3}$ $C.\cfrac{1}{4}$ $D.\cfrac{1}{5}$
$A.-2018$ $B.-2016$ $C.-2019$ $D.-2017$

一、常规题型

二、典例剖析

例1【2018常州八校联考】

已知函数\(f(x)=x^2+tx+t\),对\(\forall x\in R\)\(f(x)>0\),函数\(g(x)=3x^2-2(t+1)x+t\),则“\(\exists a,b\in (0,1)\),使得\(g(a)=g(b)=0\)”为真命题的概率为【】

$A.\cfrac{1}{2}$ $B.\cfrac{1}{3}$ $C.\cfrac{1}{4}$ $D.\cfrac{1}{5}$

分析:由\(f(x)>0\)\(x\in R\)恒成立可知,\(\Delta =t^2-4t<0\),解得\(t\in (0,4)\),到此可知为长度型几何概型,且概率公式的分母为\(4-0=4\)

对函数\(g(x)\)而言,“\(\exists a,b\in (0,1)\),使得\(g(a)=g(b)=0\)”为真命题,即意味函数在区间\((0,1)\)上必须有两个零点,则函数\(g(x)\)须满足条件:

\(\left\{\begin{array}{l}{g(0)>0}\\{g(1)>0}\\{0<-\cfrac{-2(t+1)}{2\times 3}<1}\\{\Delta \ge 0}\end{array}\right.\),解得\(0<t<1\)

由长度型几何概型求解公式可知,\(P=\cfrac{1-0}{4-0}=\cfrac{1}{4}\),故选\(C\)

解后反思:

一元二次方程根的分布

②三种数学语言的转化能力三种数学语言的转化

例2【2019高三理科数学课时作业用题】

已知正棱锥\(S-ABC\)的底面边长为4,高为3,在正棱锥内任取一点\(P\),使得\(V_{P-ABC}<\cfrac{1}{2}V_{S-ABC}\)的概率是【】

$A.\cfrac{3}{4}$ $B.\cfrac{7}{8}$ $C.\cfrac{1}{2}$ $D.\cfrac{1}{4}$

分析:做出正棱锥\(S-ABC\)如图所示,设其高线为\(SO=h\),设三棱锥\(P-ABC\)的高为\(h_1\)

先将不等关系改写为相等关系,即\(V_{P-ABC}=\cfrac{1}{2}V_{S-ABC}\),即寻找临界状态下的点\(P\)的位置。

992978-20190317121806391-1836472144.jpg

则由\(\cfrac{1}{3}\cdot S_{\triangle ABC}\cdot h=\cfrac{1}{2}\cdot \cfrac{1}{3}\cdot S_{\triangle ABC}\cdot h_1\),得到\(h_1=\cfrac{1}{2}h\),即处于临界状态时,点\(P\)应该在正棱锥\(S-ABC\)的中截面\(MND\)内,

然后我们就能很容易的分析出要满足\(V_{P-ABC}<\cfrac{1}{2}V_{S-ABC}\),则点\(P\)应该在正三棱台\(NDM-ABC\)内部,

故所求概率为\(P=1-\cfrac{V_{S-MND}}{V_{S-ABC}}=1-\cfrac{\cfrac{1}{3}\cdot \cfrac{\sqrt{3}}{4}\cdot 2^2\cdot h_1}{\cfrac{1}{3}\cdot \cfrac{\sqrt{3}}{4}\cdot 4^2\cdot h}=1-\cfrac{1}{8}=\cfrac{7}{8}\),故选\(B\)

例8【2019届高三理科数学二轮用题】已知一只蚂蚁在底面半径为5cm,高为12cm的圆锥侧面爬行,若蚂蚁在圆锥侧面上任意一点出现的可能性相等,且将蚂蚁看作一个点,则蚂蚁距离圆锥顶点超过5cm的概率为【】

$A.\cfrac{12}{13}$ $B.\cfrac{5}{13}$ $C.\cfrac{144}{169}$ $D.\cfrac{25}{169}$

分析:将题目中的圆锥展开后,则其侧面形成一个半径为\(13\),弧长为\(10\pi\)的扇形,如下图所示,

992978-20190427102407209-1450321292.jpg

要使的蚂蚁距离圆锥顶点超过5cm,则蚂蚁应该在扇环内部,而小扇形的弧长可以这样计算\(\cfrac{l}{5}=\cfrac{10\pi}{13}\),故小扇形的弧长为\(\cfrac{50\pi}{13}\)

故所求概率为\(P=1-\cfrac{\cfrac{1}{2}\times \cfrac{50\pi}{13}\times 5}{\cfrac{1}{2}\times 10\pi\times 13}=\cfrac{144}{169}\),故选\(C\)

以下图片隐藏。

例9【2019届高三理科数学三轮模拟训练题】公元前6世纪,黄金分割被毕达哥拉斯学派发现,公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。欧几里得在《几何原本》中论及正五边形有关黄金分割的定理:正五边形\(ABCDE\)中,\(AD\)\(BE\)交于点\(H\),则\(H\)\(AD\)的黄金分割点,即\(\frac{AH}{HD}=\frac{\sqrt{5}-1}{2}\),现从如图所示的正五边形中任取一点,则该点恰好取自阴影部分的概率是【】

$A.\cfrac{2}{5}$ $B.\cfrac{\sqrt{5}}{5}$ $C.\cfrac{4}{7}$ $D.\cfrac{2+\sqrt{5}}{7}$

992978-20190518162000497-1472422293.png

法1分析:由\(\frac{AH}{HD}=\frac{\sqrt{5}-1}{2}\),借助比例因子,则可设\(S_{\triangle AEH}=(\sqrt{5}-1)k(k>0)\)\(S_{\triangle DEH}=2k\)

且有\(S_{\triangle AHB}=S_{\triangle DHE}\),又由于正五边形的对称性可知,\(S_{\triangle ABE}=S_{\triangle BCD}\)\(S_{\triangle BCD}=S_{\triangle BDH}\)

\(S_{\triangle ABE}=(\sqrt{5}-1)k+2k=(\sqrt{5}+1)k\),则\(S_{阴影}=2k+2k+(\sqrt{5}-1)k=(3+\sqrt{5})k\)\(S_{正}=2k+3\cdot (\sqrt{5}+1)k=(5+3\sqrt{5})k\)

故所求概率为\(P=\cfrac{S_{阴影}}{S_{正}}=\cfrac{(3+\sqrt{5})k}{(5+3\sqrt{5})k}=\cfrac{\sqrt{5}}{5}\)

法2:设正五边形的棱长为\(a\),则\(S_{正}=5\times\cfrac{1}{2}\times a\times \cfrac{a}{2sin36^{\circ}}\times 54^{\circ}=\cfrac{5a^2}{4}\times \cfrac{cos36^{\circ}}{sin36^{\circ}}\)

992978-20190518164556795-743964448.png

\(S_{\triangle ABE}=\cfrac{1}{2}a^2\times sin108^{\circ}\),则由比例关系可得,\(S_{阴影}=\cfrac{1}{2}a^2\times cos18^{\circ}(1+\cfrac{2}{\sqrt{5}}+1)=\cfrac{1}{2}a^2\times cos18^{\circ}\times \cfrac{\sqrt{5}+3}{\sqrt{5}+1}\)

\(P=\cfrac{S_{阴影}}{S_{正}}=\cdots=\cfrac{\sqrt{5}+1}{5}\cdot \cfrac{cos18^{\circ}sin36^{\circ}}{cos36^{\circ}}=\cdots=\cfrac{\sqrt{5}}{5}\).

相关储备:计算\(sin18^{\circ}=\cfrac{\sqrt{5}-1}{4}\)

\(sin3\theta=3sin\theta cos^2\theta-sin^3\theta\)\(cos2\theta=cos^2\theta-sin^2\theta\)

则由\(sin54^{\circ}=cos36^{\circ}\),可得\(3sin18^{\circ}cos^218^{\circ}-sin^318^{\circ}=cos^218^{\circ}-sin^218^{\circ}\).

整理得到,\(4sin^318^{\circ}-2sin^218^{\circ}-3sin18^{\circ}+1=0\),用试商法尝试分解\(x=1\)为其一个根,

故可以分解为\((sin18^{\circ}-1)(4sin^218^{\circ}+2sin18^{\circ}-1)=0\)\(sin18^{\circ}=1\)舍去,

\(4sin^218^{\circ}+2sin18^{\circ}-1=0\),得到\(sin18^{\circ}=\cfrac{-2\pm \sqrt{4+4\times4}}{2\times 4}=\cfrac{-1\pm \sqrt{5}}{4}\)

舍去负值,得到\(sin18^{\circ}=\cfrac{\sqrt{5}-1}{4}\),即\(2sin18^{\circ}=\cfrac{\sqrt{5}-1}{2}\)

转载于:https://www.cnblogs.com/wanghai0666/p/10537130.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值