概率论知识回顾(二)
关键词:古典概型,几何概型
知识回顾用于巩固知识和查漏补缺。知识回顾步骤:
- 查看知识回顾中的问题,尝试自己解答
- 自己解答不出来的可以查看下面的知识解答巩固知识。
- 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。
知识回顾
- 什么是古典概型?
- 计算古典概型有什么是需要注意的?
- 古典概率中的基本事件总数和有利事件个数是指什么?
- 求解古典概型的关键点是什么?
- 简述“分房问题”以及与分房问题类似的问题。
- 什么是几何概型?
- 解决几何概型的关键是什么?
- 基于概率计算中,蒙特卡洛发是什么?
知识回答
- 什么是古典概型?
- 古典概型的两个特点(1)样本空间元素个数有限。(2)每一个基本事件的概率相等。
- 计算古典概型有什么是需要注意的?
- 选取样本空间应该注意。因为不同样本空间的可能基本事件总数和有利事件数不一定相等。
- 注意样本空间中得基本事件的概率应该相等
- 每次的试验条件应该相等。即所有样本点应该在相同试验条件下得出。
- 古典概率中的基本事件总数和有利事件个数是指什么?
- 基本事件总数是指在古典概率试验中所有可能的结果的集合,其实就是Ω集合元素个数
- 对于事件A来说,它其中包含的基本事件的个数即使对A的有利事件个数
- 从上面我们知道在古典概率中 P ( A ) = A 的 有 利 事 件 个 数 基 本 事 件 总 数 = n A n Ω P(A) = \frac{A的有利事件个数}{基本事件总数} = \frac{n_A}{n_Ω} P(A)=基本事件总数A的有利事件个数=nΩnA
- 求解古典概型的关键点是什么?
- 解决古典概型的关键点是找到基本事件总数和有利事件的个数。
- 简述“分房问题”以及与分房问题类似的问题。
- 分房问题的基本问题两者分配问题。例如n个A对象分配到N个B对象。每个A对象等概率对应到B对象,因此对应的总数有 N n N^n Nn种。在此基础上添加一些条件来求此条件出现的概率。
- 比如:A对象和B对象一一对应的概率。在这里可以拆分问题,先找出n个B对象,总共有 C N n C_N^n CNn中,然后n个A对象分配给n个B对象,一共有 n ! n! n!种,因此概率为 C N n n ! N n \frac{C^n_N n!}{N^n} NnCNnn!
- 求生日是否在同一天的问题也是一个分房问题。例如求n个人中至少两个人生日在同一天的概率。其实就是求n个A(人)对象分到365(假设一年365天)个B(一年中的天数)对象中,至少两个A分给一个B的概率。这个求法可以让全部情况减去A-B一一对应的情况,就可以找到至少两个A分配给B的情况了。其实就是 1 − C 365 n n ! 36 5 n 1- \frac{C^n_{365} n!}{365^n} 1−365nC365nn!。令人难以置信的是当有23个人的时候,至少两个人在同一天生日的概率就达到了51%。
- 什么是几何概型?
- 几何概型有下面几个特点:(1)样本空间具有非零测度(大小)(2)进行一次试验相当于在一个几何体中选取一点。(3)Ω中事件A的概率只受A的测度影响,不受A在样本空间Ω的位置影响。
- 解决几何概型的关键是什么?
- 如何将随机试验问题转换为几何取点问题。怎么找到一个几何取点公式来对应随机试验。
- 基于概率计算中,蒙特卡洛法是什么?
- 我们可以根据概率模型求解出某一概率的公式。而如果在这个概率公式中存在某个未知数的话。我们就在使用大量实验求出该频率(可以认为比较接近概率)的情况下,反推出这个未知数。
- 上面过程中的方法就是蒙特卡洛法。现在我们可以通过计算机进行大量的模拟计算获取某一事件的概率。
- 例如 P ( A ) = 0.3 ∗ α P(A) = 0.3*\alpha P(A)=0.3∗α, 假如我们通过大量实验,得知频率 f n ( A ) = 0.3 f^n(A) = 0.3 fn(A)=0.3即可认为 P ( A ) ≈ 0.3 P(A) \approx 0.3 P(A)≈0.3, 因此就有 α = P ( A ) / 0.3 = 1 \alpha = P(A)/0.3 = 1 α=P(A)/0.3=1
- 例如书中提到的根据针的落点与平行线相交的概率反向估计π值的例子。