闭区间上的连续函数必定是一致连续的

设$[a,b]$是$\mathbf{R}$上的闭区间,且$f(x)$是$[a,b]$上的连续函数,则$f(x)$在$[a,b]$上一致连续.

证明:反证法.假设$f(x)$在$[a,b]$上不是一致连续的,则必定存在这么两个序列,其中$$a_1,a_2,\cdots,a_n,\cdots$$是$[a,b]$中的一个序列,$$b_1,b_2,\cdots,b_n,\cdots$$是$[a,b]$中的另一个序列,且\begin{equation}\label{eq:11}\lim_{n\to\infty}(a_n-b_n)=0,\end{equation}但是$\forall i\in \mathbf{N}$,都有\begin{equation}\label{eq:111}|f(a_i)-f(b_i)|\geq t.\end{equation}其中$t$是一个正的常数.根据Bolzano-Weierstrass定理,序列$(a_n)_{n=1}^{\infty}$必有收敛子列$$a_{t_1},a_{t_2},\cdots$$设收敛到$p$,同理,序列$(b_n)_{n=1}^{\infty}$必定也有收敛子列$$b_{l_1},b_{l_2},\cdots$$由\ref{eq:11}可得也收敛到$p$.由于$[a,b]$是闭集,因此$p\in [a,b]$.由于$f(x)$在$[a,b]$上连续,因此可得$$\lim_{n\to\infty}|f(a_{t_n})-f(b_{l_n})|=0$$,这与\ref{eq:111}矛盾.可见,假设错误,即$f(x)$在$[a,b]$上一致连续.

转载于:https://www.cnblogs.com/yeluqing/archive/2013/02/06/3827798.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值