设f(x)在[0,1]上连续,$\int_{0}^{1}f(x)dx=A$,则$\int_{0}^{1}dx\int_{x}^{1}f(x)f(y)=$多少?

本文探讨了当f(x)在[0,1]上连续且∫01f(x)dx=A时,如何计算∫01dx∫x1f(x)f(y)的值。通过分析积分区域和利用函数的对称性,得出该积分等于A²/2,选项D是正确答案。" 80538680,1954505,创建和发布iOS私有Pods库,"['iOS开发', 'Git', 'podspec']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设f(x)在[0,1]上连续, ∫ 0 1 f ( x ) d x = A \int_{0}^{1}f(x)dx=A 01f(x)dx=A,则 ∫ 0 1 d x ∫ x 1 f ( x ) f ( y ) = \int_{0}^{1}dx\int_{x}^{1}f(x)f(y)= 01dxx1f(x)f(y)=多少?
A.A B.A/2 C. A 2 A^{2} A2 D. A 2 A^{2} A2/2
分析:积分区域D为0<=x<=1,x<=y<=1,因为被积函数为f(x)*f(y)与f(y)*f(x)相同,故可做积分区域为D’为D关于y=x对称的区域0<=x<=1,0<=y<=x.
∫ 0 1 d x ∫ x 1 f ( x ) f ( y ) = \int_{0}^{1}dx\int_{x}^{1}f(x)f(y)= 01dxx1f(x)f(y)= ∫ 0 1 d x ∫ 0 x f ( y ) f ( x ) = \int_{0}^{1}dx\int_{0}^{x}f(y)f(x)= 01dx0xf(y)f(x)= ∫ 0 1 d x ∫ 0 x f ( x ) f ( y ) \int_{0}^{1}dx\int_{0}^{x}f(x)f(y) 01dx0xf(x)f(y)=1/2 ∫ 0 1 d x ∫ 0 1 f ( x ) f ( y ) \int_{0}^{1}dx\int_{0}^{1}f(x)f(y) 01dx01f(x)f(y)=1/2 ∫ 0 1 f ( x ) d x ∗ ∫ 0 1 f ( y ) d y \int_{0}^{1}f(x)dx*\int_{0}^{1}f(y)dy 01f(x)dx01f(y)dy= A 2 A^{2} A2/2.故选D.
此解法为本人见解,不知其在其它方面是否也有同效,只提供想法,不可乱用。

将第一部分 选择题 1. 下列函数中,是奇函数的是( ) A. $y=x^2+3$ B. $y=""sin(x)$ C. $y=2x$ D. $y=e^x$ 2. 函数 $f(x)=""begin{cases} x+1, & x""leq -1 """" x^2, & x>-1 ""end{cases}$$x=-1$ 处( ) A. 连续但不可导 B. 不连续不可导 C. 连续可导 D. 不连续但可导 3. 数列 $""{a_n""}$ 满足 $a_n=(-1)^n""frac{n}{n+1}$,则 $""{a_n""}$ 的极限是( ) A. $-""frac{1}{2}$ B. $""frac{1}{2}$ C. $1$ D. 不存在 4. 函数 $f(x)=""cos(x^2)$ 的导数是( ) A. $-""sin(x^2)$ B. $-2x""sin(x^2)$ C. $2x""sin(x^2)$ D. $""sin(x^2)$ 5. 若 $""int_1^2 f(x)dx=3$$""int_2^3 f(x)dx=-2$,则 $""int_1^3 f(x)dx$ 等于( ) A. $-5$ B. $5$ C. $-1$ D. $1$ ## 第二部分 简答题 1. 说明函数的单调性判别法。 2. 怎样函数的极值和最值? 3. 推导积分上限的函数的导数公式。 4. 如何利用定积分计算平面图形的面积? ## 第三部分 计算题 1. 函数 $y=""sqrt{x^2+1}$ 的导数。 2. 计算 $""lim_{x""to 0}""frac{""sin(2x)}{""sqrt{1+x}-1}$。 3. $""int x""ln x dx$。 4. 计算曲线 $y=x^2$$x""in[0,1]$ 上围成的图形的面积。 ## 参考答案 ### 选择题 1. B 2. A 3. D 4. B 5. A ### 简答题 1. 单调上升的充分必要条件是 $f'(x)>0$,单调下降的充分必要条件是 $f'(x)<0$2. 极值的步骤: 1. 出导数 $f'(x)$2. 解方程 $f'(x)=0$,得到可能的极值点。 3. 利用二阶导数 $f''(x)$ 判断每个可能的极值点是极大值、极小值还是不是极值。 4. 比较所有可能的极值点得到最大值和最小值。 3. $F(x)=""int_a^x f(t)dt$,则 $F'(x)=f(x)$。 4. 曲线 $y=x^2$$x""in[0,1]$ 上围成的图形的面积为 $""int_0^1 x^2 dx=""frac{1}{3}$。 ### 计算题 1. $y'=""frac{x}{""sqrt{x^2+1}}$ 2. $2$ 3. $""frac{1}{2}x^2(""ln x-""frac{1}{2})+C$ 4. $""frac{1}{3}$翻译成Markdown
03-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值