设f(x)在[0,1]上连续,
∫
0
1
f
(
x
)
d
x
=
A
\int_{0}^{1}f(x)dx=A
∫01f(x)dx=A,则
∫
0
1
d
x
∫
x
1
f
(
x
)
f
(
y
)
=
\int_{0}^{1}dx\int_{x}^{1}f(x)f(y)=
∫01dx∫x1f(x)f(y)=多少?
A.A B.A/2 C.
A
2
A^{2}
A2 D.
A
2
A^{2}
A2/2
分析:积分区域D为0<=x<=1,x<=y<=1,因为被积函数为f(x)*f(y)与f(y)*f(x)相同,故可做积分区域为D’为D关于y=x对称的区域0<=x<=1,0<=y<=x.
则
∫
0
1
d
x
∫
x
1
f
(
x
)
f
(
y
)
=
\int_{0}^{1}dx\int_{x}^{1}f(x)f(y)=
∫01dx∫x1f(x)f(y)=
∫
0
1
d
x
∫
0
x
f
(
y
)
f
(
x
)
=
\int_{0}^{1}dx\int_{0}^{x}f(y)f(x)=
∫01dx∫0xf(y)f(x)=
∫
0
1
d
x
∫
0
x
f
(
x
)
f
(
y
)
\int_{0}^{1}dx\int_{0}^{x}f(x)f(y)
∫01dx∫0xf(x)f(y)=1/2
∫
0
1
d
x
∫
0
1
f
(
x
)
f
(
y
)
\int_{0}^{1}dx\int_{0}^{1}f(x)f(y)
∫01dx∫01f(x)f(y)=1/2
∫
0
1
f
(
x
)
d
x
∗
∫
0
1
f
(
y
)
d
y
\int_{0}^{1}f(x)dx*\int_{0}^{1}f(y)dy
∫01f(x)dx∗∫01f(y)dy=
A
2
A^{2}
A2/2.故选D.
此解法为本人见解,不知其在其它方面是否也有同效,只提供想法,不可乱用。
设f(x)在[0,1]上连续,$\int_{0}^{1}f(x)dx=A$,则$\int_{0}^{1}dx\int_{x}^{1}f(x)f(y)=$多少?
最新推荐文章于 2024-01-28 01:33:37 发布