这里将写了一个KDTree
类,仅实现了最近邻,K近邻之后若有时间再更新:
from collections import namedtuple
from operator import itemgetter
from pprint import pformat
import numpy as np
class Node(namedtuple('Node', 'location left_child right_child')):
def __repr__(self):
return pformat(tuple(self))
class KDTree():
def __init__(self, points):
self.tree = self._make_kdtree(points)
if len(points) > 0:
self.k = len(points[0])
else:
self.k = None
def _make_kdtree(self, points, depth=0):
if not points:
return None
k = len(points[0])
axis = depth % k
points.sort(key=itemgetter(axis))
median = len(points) // 2
return Node(
location=points[median],
left_child=self._make_kdtree(points[:median], depth + 1),
right_child=self._make_kdtree(points[median + 1:], depth + 1))
def find_nearest(self,
point,
root=None,
axis=0,
dist_func=lambda x, y: np.linalg.norm(x - y)):
if root is None:
root = self.tree
self._best = None
# 若不是叶节点,则继续向下走
if root.left_child or root.right_child:
new_axis = (axis + 1) % self.k
if point[axis] < root.location[axis] and root.left_child:
self.find_nearest(point, root.left_child, new_axis)
elif root.right_child:
self.find_nearest(point, root.right_child, new_axis)
# 回溯:尝试更新 best
dist = dist_func(root.location, point)
if self._best is None or dist < self._best[0]:
self._best = (dist, root.location)
# 若超球与另一边超矩形相交
if abs(point[axis] - root.location[axis]) < self._best[0]:
new_axis = (axis + 1) % self.k
if root.left_child and point[axis] >= root.location[axis]:
self.find_nearest(point, root.left_child, new_axis)
elif root.right_child and point[axis] < root.location[axis]:
self.find_nearest(point, root.right_child, new_axis)
return self._best
测试:
point_list = [(2, 3, 3), (5, 4, 4), (9, 6, 7), (4, 7, 7), (8, 1, 1), (7, 2, 2)]
kdtree = KDTree(point_list)
point = np.array([5, 5, 5])
print(kdtree.find_nearest(point))
输出:
(1.4142135623730951, (5, 4, 4))
与 Scikit-Learn 性能对比(上是我的实现,下是 Scikit-Learn 的实现):
可以看到仅相差 1 毫秒,所以性能说得过去。
(本文完)