『OPEN3D』1.5.3 动手实现点云KD树最近邻

本文介绍了K-d树在高维数据查找中的作用,详细讲解了K-d树的构建、查找过程,并提供了K-d树在点云数据中的应用实例,包括最近邻和K近邻查找。通过构建K-d树,可以对点云数据进行高效检索,尤其是在点云数据中寻找最近邻和K个最近邻。文章还讨论了K-d树查找的优化策略,如剪枝条件的设定,以及在实际应用中如何设置搜索限制以提高性能。
摘要由CSDN通过智能技术生成

        

本专栏地址:

https://blog.csdn.net/qq_41366026/category_12186023.html?spm=1001.2014.3001.5482

       

1、 K-d树有什么用

        当我们在一个排序后的容器中进行查找时,使用二分查找可以显著减少查找时间。基于这个思路,我们可以引入一种类似于二分查找的数据结构,它被称为二叉搜索树(Binary Search Tree,BST)。而对于高维空间中的数据,可以使用K-d树(K-dimensional tree)这样的数据结构。

        二叉搜索树是一种有序的二叉树,其中每个节点都包含一个键值,且满足以下性质:

  • 左子树中的所有节点的键值都小于根节点的键值。
  • 右子树中的所有节点的键值都大于根节点的键值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NNNNNathan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值