张成是指将一组向量通过加法和乘法运算所构成的向量集合,从几何的角度来看就是张成的空间如将n*(1,0)+m*(0,1)就能构成一个平面。
基是一组线性无关的向量,如:1是一维空间线中的基,(1,0)和(0,1)是二维空间平面中的基,(1,0,0)、(0,1,0)和(0,0,1)构成了三维空间的基,实际上它们是最易理解的标准正交基(即长度为1并且互相正交),标准正交基实际有无穷个(一维空间例外,例如在二维空间中是个单位圆,三维空间中是个单位球体)。每个空间都有无数个基,如2也是一维空间线中的基,(2,0)和(0,2)也是二维空间中的基,(2,0,0)、(0,2,0)和(0,0,2)也是三维空间的基。在线性代数的静态观-向量空间(一)中提到的坐标系就是基。在解决任何实际问题时都必须定义基!
线性无关是指一组向量中,任何一个向量都不在其余向量所组成的空间中,如(1,0)、(0,1)、(1,1)只能张成二维平面,任何一个向量在其余两个向量张成的平面中,因此它们不是线性无关的;再如(1,1)、(2,2)、(3,3)张成的空间是平面中过(0,0)向量并且与x轴夹角为45度的直线。
子空间是指由空间中任意向量构成的基所张成的空间,空间中的子空间一般来说有无穷个如:二维平面有无数个过零点的直线,三维空间有无数个过零点的直线和无数个过零点的平面。
坐标向量是基的线性组合权重所构成的向量。直观来看就是将目标向量按照向量加权后平行相加法则求出的那个的点,如(2,2)=1*(2,0)+1*(0,2),(1,1)就是(2,2)的坐标向量。实际上基就是参考系,而最优的标准正交基更容易能够让人按照常识去理解空间体系。将(2,2)表示成2*(1,0)+2*(0,1)更能让人理解, 并且在这种情况下坐标向量和实际向量是相等的。通俗点坐标向量就是向量本身在当前基下的位置!
维数是基中向量的个数,注意维数相等不等于空间相同,如三维空间中的二维平面与普通的二维平面不是同一个空间。
秩是列向量张成空间的维数,实际上由行向量张成空间的维数与列向量张成空间的维数是相等的,但是这两个空间一般不是同一个空间。不过有例外即满秩的时候列向量空间与行向量空间是同一个空间,所谓的满秩是指n阶方阵中,各个列向量都是线性无关的。
非奇异矩阵是指满秩的矩阵。