Python中numpy库unique函数解析

1. 对于一维列表或数组A: 

import numpy as np
A = [1, 2, 2, 3, 4, 3]
a = np.unique(A)
print a            # 输出为 [1 2 3 4]
a, b, c = np.unique(A, return_index=True, return_inverse=True)
print a, b, c      # 输出为 [1 2 3 4], [0 1 3 4], [0 1 1 2 3 2]

2. 对于二维数组(“darray数字类型”): 

A = [[1, 2], [3, 4], [5, 6], [1, 2]]
A = np.array(A)   #列表类型需转为数组类型
a, b, c = np.unique(A.view(A.dtype.descr * A.shape[1]), return_index=True, return_inverse=True)
print a, b, c     #输出为 [(1, 2) (3, 4) (5, 6)], [0 1 2], [0 1 2 0]

可以看出, Python中unique函数与Matlab完全一致. 

转载于:https://www.cnblogs.com/common376/p/5826228.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值