[]ARC099

C:普及组难度的题

D:令$S(n)$表示$n$的数位和,一个数$n$是Snuke number当且仅当对所有$m\gt n$有$\frac n{S(n)}\leq\frac m{S(m)}$,求出前$K$个Snuke number

这题是整场最难的题(雾

令$f(n)$表示使$\frac x{S(x)}$最小的$x(x\geq n)$,于是我们从$n=1$开始,重复执行$n\gets f(n+1)$就可以得到所有的Snuke number

问题在于如何求$f(n)$,下面我们将说明:$f(n)$一定是把$n$的最后某几位改为$9$得到的,以下的讨论中假设$f(n)\gt n$,最后检查一下$n$是否更优即可

首先显然$f(n)$和$n$有相同的位数,因为$9\cdots9$是Snuke number

令$f(n)=x$,设$10^d$位是$x$与$n$不同的最高位,假如存在$i\lt d$且$x$的$10^i$位不是$9$,那么我们把$x$的$10^d$位$-1$并把$10^i$位变成$9$得到$y$,显然$N\leq y\lt x,S(y)\geq S(x)$,这与$\frac x{S(x)}$最小相矛盾,这样我们就证明了$f(n)$的$10^{0\cdots d-1}$位都是$9$

然后我们来证明$x$的$10^d$位也是$9$,假设它是$a(a\lt9)$,那么对于$k\leq9-a$,$S(x+k)=S(x)+k$,因为$\frac{x+k\cdot10^d}{S(x)+k}$关于$k$单调递减,所以把这一位改成$9$是更优的

所以我们这样求$f(n)$:枚举$k$并尝试把$n$的最后$k$位改成$9$得到$x$,取使$\frac x{S(x)}$最小的$x$即可

#include<stdio.h>
typedef long long ll;
typedef double du;
const du inf=9223372036854775807.;
du S(ll n){
	du s=0;
	while(n){
		s+=n%10;
		n/=10;
	}
	return s;
}
ll f(ll n){
	ll d,t,f;
	du mn,s;
	f=n;
	mn=n/S(n);
	for(d=1;d<=n;d*=10){
		t=n/d*d+d*10-1;
		s=t/S(t);
		if(s<mn){
			mn=s;
			f=t;
		}
	}
	return f;
}
int main(){
	int k;
	ll n;
	scanf("%d",&k);
	for(n=1;k--;n=f(n+1))printf("%lld\n",n);
}

E:给一个图,要把这个图划分成两个团,使得两个团中的边数加起来最小

取补图,问题变为把图划分成两个独立集,如果不是二分图显然无解,否则统计出最后能得到的所有可能的独立集大小并统计答案即可

#include<stdio.h>
#include<string.h>
int min(int a,int b){return a<b?a:b;}
bool a[710][710];
int c[710],n,M1,M2;
bool dfs(int x,int f){
	if(c[x])return c[x]!=f;
	c[x]=f;
	M1+=f==2;
	M2+=f==3;
	for(int i=1;i<=n;i++){
		if(a[x][i]&&dfs(i,f^1))return 1;
	}
	return 0;
}
bool t1[710],t2[710];
int s2(int n){return n*(n-1)/2;}
int main(){
	int m,i,j,x,y,ans;
	scanf("%d%d",&n,&m);
	for(i=1;i<n;i++){
		for(j=i+1;j<=n;j++)a[i][j]=a[j][i]=1;
	}
	while(m--){
		scanf("%d%d",&x,&y);
		a[x][y]=a[y][x]=0;
	}
	t1[0]=1;
	for(i=1;i<=n;i++){
		if(!c[i]){
			M1=M2=0;
			if(dfs(i,2)){
				puts("-1");
				return 0;
			}
			memset(t2,0,sizeof(t2));
			for(j=0;j<=n;j++){
				if(t1[j])t2[j+M1]=t2[j+M2]=1;
			}
			memcpy(t1,t2,sizeof(t2));
		}
	}
	ans=2147483647;
	for(i=1;i<n;i++){
		if(t1[i])ans=min(ans,s2(i)+s2(n-i));
	}
	printf("%d",ans);
}

F:有一个序列$A$和一个指针$p$,初始时序列全为$0$,指针指向$A$的第$0$位,对一个字符串,我们要按顺序执行字符串中的字符代表的命令,命令可以是$p++,p--,(*p)++,(*p)--$,给出一个字符串$S$,问它有多少子串使得执行这个子串和执行$S$所得到的序列是一样的

直接上哈希,具体地,对一个序列$A$,我们选取两个质数$B,P$并使得它的哈希值为$\left(\sum A_iB^i\right)\%P$

我们存$S$的每个前缀的哈希值$h_i$和偏移量$p_i$(如果偏移了$x$,那么$p_i=B^x$),此时如果$h_n=\frac{h_r-h_{l-1}}{p_{l-1}}$,那么$S_{l\cdots r}$就是满足要求的区间,所以直接从后往前扫,用map统计并更新答案即可

要选取相当大的质数和模数,我偷懒用了__int128

#include<stdio.h>
#include<map>
using namespace std;
typedef long long ll;
const ll mod=1000000000000000031ll,b=1000000000000000003ll,rb=821428571428571454ll;
ll mul(ll a,ll b){return(__int128)a*b%mod;}
ll ad(ll a,ll b){return(a+b)%mod;}
char s[250010];
ll p[250010],st[250010];
map<ll,int>m;
int main(){
	int n,i;
	ll ans;
	scanf("%d%s",&n,s+1);
	p[0]=1;
	for(i=1;i<=n;i++){
		p[i]=p[i-1];
		st[i]=st[i-1];
		switch(s[i]){
			case'+':st[i]=ad(st[i],p[i]);break;
			case'-':st[i]=ad(st[i],mod-p[i]);break;
			case'>':p[i]=mul(p[i],b);break;
			case'<':p[i]=mul(p[i],rb);break;
		}
	}
	ans=0;
	for(i=n;i>0;i--){
		m[st[i]]++;
		ans+=m[ad(mul(st[n],p[i-1]),st[i-1])];
	}
	printf("%lld",ans);
}

转载于:https://www.cnblogs.com/jefflyy/p/9255028.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值