在博客上发表了求最短路的Dijkstra算法后,有很多同学对路径比较感兴趣。也就是说,他们不仅想知道最后的结果,也想知道结果是怎么来的。想想也是自己的坏习惯所致,浅尝辄止。重新把Dijkstra算法的思路整理一遍,正好也温故而知新。
首先从图的遍历方式说起。在数据结构中,树的遍历方式有三种:先序遍历、中序遍历、后序遍历。图比树更为灵活,但是图的遍历方式只有两种:深度优先和宽度优先。
Dijkstra在本质上则是宽度优先。
那么怎么记录路径呢?用一个一维数组就可以了。记录从到当前点的上一个点就OK了,然后再回溯,就得出了路径了。
代码如下:
import java.util.Arrays;
public class Dijkstra {
private static final int inf=Integer.MAX_VALUE;//表示两个点之间无法直接连通
public static int[] dijkstra(int[][] graph,int n,int u){
int[] path=new int[n];
int dist[]=new int[n];
boolean s[]=new boolean[n];
Arrays.fill(s, false);
Arrays.fill(dist, inf);
int min,v;
for(int i=0;i<n;i++){
dist[i]=graph[u][i];
if(i!=u&&dist[i]<inf)path[i]=u;
else path[i]=-1;
}
s[u]=true;
while(true){
min=inf;v=-1;
//找到最小的dist
for(int i=0;i<n;i++){
if(!s[i]){
if(dist[i]<min){min=dist[i];v=i;}
}
}
if(v==-1)break;//找不到更短的路径了
//更新最短路径
s[v]=true;
for(int i=0;i<n;i++){
if(!s[i]&&
graph[v][i]!=inf&&
dist[v]+graph[v][i]<dist[i]){
dist[i]=dist[v]+graph[v][i];
path[i]=v;
}
}
}
//输出路径
int[] shortest=new int[n];
for(int i=1;i<n;i++){
Arrays.fill(shortest, 0);
System.out.print(dist[i]+":");
int k=0;
shortest[k]=i;
while(path[shortest[k]]!=0){
k++;shortest[k]=path[shortest[k-1]];
}
k++;shortest[k]=0;
for(int j=k;j>0;j--){
System.out.printf("%d->",shortest[j]);
}
System.out.println(shortest[0]);
}
return dist;
}
public static void main(String[] args) {
int[][] W = {
{ 0, 1, 4, inf, inf, inf },
{ 1, 0, 2, 7, 5, inf },
{ 4, 2, 0, inf, 1, inf },
{ inf, 7, inf, 0, 3, 2 },
{ inf, 5, 1, 3, 0, 6 },
{ inf, inf, inf, 2, 6, 0 } };
dijkstra(W, 6, 0);
}
}
结果:
1:0->1
3:0->1->2
7:0->1->2->4->3
4:0->1->2->4
9:0->1->2->4->3->5
第一个数字表示最短路径,冒号后面的表示路径。配合http://sbp810050504.blog.51cto.com/2799422/690803里面的图看就很容易懂了。
注,用到的数据还是http://sbp810050504.blog.51cto.com/2799422/690803下的数据。
最后说明一点,上面的找路代码是直接套用《图论算法理论、实现及应用》一书,并非我自己想出来的。贴到博客的目的只是为了让更多的人学到东西。