无向图的最短路径求解算法之——Dijkstra算法(三)

在博客上发表了求最短路的Dijkstra算法后,有很多同学对路径比较感兴趣。也就是说,他们不仅想知道最后的结果,也想知道结果是怎么来的。想想也是自己的坏习惯所致,浅尝辄止。重新把Dijkstra算法的思路整理一遍,正好也温故而知新。

   

   首先从图的遍历方式说起。在数据结构中,树的遍历方式有三种:先序遍历、中序遍历、后序遍历。图比树更为灵活,但是图的遍历方式只有两种:深度优先和宽度优先。

      Dijkstra在本质上则是宽度优先。

   那么怎么记录路径呢?用一个一维数组就可以了。记录从到当前点的上一个点就OK了,然后再回溯,就得出了路径了。

   代码如下:



import java.util.Arrays;
public class Dijkstra {
    private static final int inf=Integer.MAX_VALUE;//表示两个点之间无法直接连通
    public static int[] dijkstra(int[][] graph,int n,int u){
        int[] path=new int[n];
        int dist[]=new int[n];
        boolean s[]=new boolean[n];
        Arrays.fill(s, false);
        Arrays.fill(dist, inf);
        int min,v;
        for(int i=0;i<n;i++){
            dist[i]=graph[u][i];
            if(i!=u&&dist[i]<inf)path[i]=u;
            else path[i]=-1;
        }
        s[u]=true;
        while(true){
            min=inf;v=-1;
            //找到最小的dist
            for(int i=0;i<n;i++){
                if(!s[i]){
                    if(dist[i]<min){min=dist[i];v=i;}
                }
            }
            if(v==-1)break;//找不到更短的路径了
            //更新最短路径
            s[v]=true;
            for(int i=0;i<n;i++){
                if(!s[i]&&
                        graph[v][i]!=inf&&
                        dist[v]+graph[v][i]<dist[i]){
                    dist[i]=dist[v]+graph[v][i];
                    path[i]=v;
                }
            }
        }
        //输出路径
        int[] shortest=new int[n];
        for(int i=1;i<n;i++){
            Arrays.fill(shortest, 0);
            System.out.print(dist[i]+":");
            int k=0;
            shortest[k]=i;
            while(path[shortest[k]]!=0){
                k++;shortest[k]=path[shortest[k-1]];
            }
            k++;shortest[k]=0;
            for(int j=k;j>0;j--){
                System.out.printf("%d->",shortest[j]);
            }
            System.out.println(shortest[0]);
        }
        return dist;
    }
    public static void main(String[] args) {
         int[][] W = { 
                    {  0,   1,   4,  inf,  inf,  inf },
                    {  1,   0,   2,   7,    5,  inf },
                    {  4,   2,   0,  inf,    1,  inf }, 
                    { inf,  7,  inf,   0,    3,    2 },
                    { inf,  5,    1,   3,   0,    6 }, 
                    { inf, inf,  inf,   2,   6,    0 } };
                                                                              
         dijkstra(W, 6, 0);
                                                                            
    }
}

结果:

1:0->1

3:0->1->2

7:0->1->2->4->3

4:0->1->2->4

9:0->1->2->4->3->5

第一个数字表示最短路径,冒号后面的表示路径。配合http://sbp810050504.blog.51cto.com/2799422/690803里面的图看就很容易懂了。

注,用到的数据还是http://sbp810050504.blog.51cto.com/2799422/690803下的数据。

最后说明一点,上面的找路代码是直接套用《图论算法理论、实现及应用》一书,并非我自己想出来的。贴到博客的目的只是为了让更多的人学到东西。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值