Schwarz积分公式

本文详细介绍了Schwarz积分公式,通过两种方法推导得出公式,并解释了其在Dirchlet问题中的重要性。此外,还展示了如何利用幂级数展开证明该公式,强调了全纯函数实部的关系。
摘要由CSDN通过智能技术生成

设$f\in H(B(0,R))\cap C(\overline{B(0,R)})$,且$f=u+iv$,则$f$可用其实部表示为

$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{Re^{i\theta}+z}{Re^{i\theta}-z}u(Re^{i\theta}){\rm d}\theta+iv(0)$$

这是史济怀《复变函数》P117的第8题,方法很多,这里写两种。

方法一:$\forall z\in B(0,R)$,由Cauchy积分公式$$f(z)=\frac{1}{2\pi i}\int_{\partial B(0,R)}\frac{f(\zeta)}{\zeta-z}{\rm d}\zeta=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\frac{\zeta}{\zeta-z}{\rm d}\theta\tag{1}$$

而$z$关于$\partial B(0,R)$的对称点为$z^*=\frac{R^2}{\overline{z}}$在圆外,所以由Cauchy积分定理$$0=\frac{1}{2\pi i}\int_{\partial B(0,R)}\frac{f(\zeta)}{\zeta-\frac{R^2}{\overline{z}}}{\rm d}\zeta=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\frac{\zeta\overline{z}}{\zeta\overline{z}-R^2}{\rm d}\theta\tag{2}$$

(1)-(2)得$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\left(\frac{\zeta}{\zeta-z}-\overline{\left(\frac{z}{z-\zeta}\right)}\right){\rm d}\theta&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值