universe_1207
这个作者很懒,什么都没留下…
展开
-
蒸饺矩阵第二弹
文章目录<font color=>原创 2019-09-07 10:53:23 · 221 阅读 · 0 评论 -
对合矩阵和蒸饺矩阵一道相似的例题
对合矩阵题目A,BA,BA,B都是对合矩阵,且满足∣A∣+∣B∣=0|A|+|B|=0∣A∣+∣B∣=0证明:A+B不可逆A+B不可逆A+B不可逆解答这道题明明很简单,也不知道咋回事居然要想一会才知道咋做,而且之前我还做出来过,我觉得这道题有毒对合矩阵使A,BA,BA,B满足:∣A∣,∣B∣=1/−1|A|,|B|=1/-1∣A∣,∣B∣=1/−1 A−1=A,B−1=BA^{-1}=A...原创 2019-08-22 15:34:48 · 811 阅读 · 0 评论 -
正交变换
文章目录正交变换正交变换的等价命题证明①⇒\Rightarrow⇒②②⇒\Rightarrow⇒①①⇒\Rightarrow⇒③③⇒\Rightarrow⇒①③⇒\Rightarrow⇒④④⇒\Rightarrow⇒③第一类与第二类正交变换正交变换欧式空间V中的线性变换A\mathscr{A}A若能保持向量的内积不变,则称这样的变换为正交变换,即对∀α,β∈V\forall\alpha,\b...原创 2019-10-24 11:18:24 · 3933 阅读 · 0 评论 -
蒸饺补 and 蒸饺投影
文章目录蒸饺补补充:子空间蒸饺投影蒸饺补UUU是(欧几里得空间)RnR^nRn的一个子空间向量α\alphaα与UUU的所有向量均蒸饺⇒α与U蒸饺,记作\Rightarrow\alpha与U蒸饺,记作⇒α与U蒸饺,记作 α⊥U\alpha\perp Uα⊥UU⊥={α∈Rn∣α⊥U}U^{\perp}=\{\alpha\in R^n|\alpha\perp U\}U⊥={α∈Rn∣α⊥U...原创 2019-08-17 17:38:02 · 239 阅读 · 2 评论 -
上下三角与蒸饺的奇妙反应
文章目录蒸饺+上三角$\Rightarrow$?证明可逆$\Rightarrow$?$\cdot$ ?QR分解对比LU分解蒸饺+上三角⇒\Rightarrow⇒?P218 例2nnn级矩阵AAA是蒸饺+上三角⇒\Rightarrow⇒AAA是对角矩阵AAA的主对角元是1/-1证明设AAA的列向量组是α1,α2,...,αn\alpha_1,\alpha_2,...,\alpha...原创 2019-08-17 16:08:37 · 305 阅读 · 0 评论 -
蒸饺和他的代数余子式
文章目录性质1进阶版证明性质1AAA是nnn级蒸饺+∣A∣={1⇒aij=Aij−1⇒aij=−Aij|A|=\begin{cases}1&\Rightarrow a_{ij}=A_{ij}\\-1&\Rightarrow a_{ij}=-A_{ij}\end{cases}∣A∣={1−1⇒aij=Aij⇒aij=−Aij反着来一下 ∣A∣=1...原创 2019-08-17 16:52:44 · 228 阅读 · 0 评论 -
欧几里得空间补充——度量矩阵
文章目录欧几里得空间度量矩阵不同基的度量矩阵是合同的!度量矩阵是正定的!由标准正交基到标准正交鸡的过渡矩阵为蒸饺矩阵;反之,若一组基是标准正交鸡,且过渡矩阵是正交矩阵,那么第二组基也是标准正交鸡欧几里得空间V是实数域上的线性空间,在V上定义了个二元实函数,称为内积,记作(α,β)(\alpha,\beta)(α,β),它需要具备以下性质:①对称性(α,β)=(β,α)(\alpha,\be...原创 2019-10-24 10:27:22 · 8140 阅读 · 4 评论 -
同构
文章目录同构两个有限维欧氏空间同构的充要条件是:它们的维数相同同构实数域R上欧氏空间V,V′V,V'V,V′称为同构的,如果从V→V′V\to V'V→V′有一个双射σ\sigmaσ满足①σ(α+β)=σ(α)+σ(β)\sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta)σ(α+β)=σ(α)+σ(β)②σ(kα)=kσ(α)\sigma(...原创 2019-10-24 10:41:53 · 1311 阅读 · 0 评论 -
蒸饺矩阵和欧几里得空间
文章目录蒸饺矩阵定义命题1性质命题2内积定义内积性质欧几里得空间向量正交正交向量组命题3证明命题4怎么寻找标准正交鸡嘞?(施密特正交化)蒸饺矩阵定义实数域上n级矩阵A若满足AA′=IAA'=IAA′=I ⇒A\Rightarrow A⇒A为蒸饺矩阵命题1A是蒸饺矩阵⇔\Leftrightarrow⇔AA′=IAA'=IAA′=I⇔\Leftrigh...原创 2019-08-14 18:49:26 · 539 阅读 · 0 评论 -
用相似矩阵解决斐波那契数列求通项问题
题目斐波那契数列是0,1,1,2,3,5,8,13,...0,1,1,2,3,5,8,13,...0,1,1,2,3,5,8,13,...它满足递推公式an+2=an+1+an,n=0,1,...a_{n+2}=a_{n+1}+a_{n},n=0,1,...an+2=an+1+an,n=0,1,...初始条件为a0=0,a1=1a_0=0,a_1=1a0=0,a1=1求Fibonacc...原创 2019-09-03 11:45:35 · 584 阅读 · 0 评论 -
4、特征向量和特征值
文章目录特征子空间重要!哈密顿-凯莱定理!特征子空间λ0\lambda_0λ0是线性变换A\mathcal AA的一个特征值全部满足条件Aα=λ0α\mathcal A\alpha=\lambda_0\alphaAα=λ0α的所有α\alphaα的集合是V的一个子空间,称为A\mathcal AA的一个特征子空间,记为Vλ0V_{\lambda_0}Vλ0,即Vλ0={α∣Aα=λ...原创 2019-10-17 20:45:42 · 467 阅读 · 0 评论 -
3、线性变换的矩阵
文章目录两个小结论证:定理1基下的矩阵定理2定理3定理4定理5两个小结论结论1:ε1,ε2,...,εn是V\varepsilon_1,\varepsilon_2,...,\varepsilon_n是Vε1,ε2,...,εn是V的一组基,若两个线性变换在这组基上的作用相同,即Aεi=Bεi,1≤i≤n\mathcal A\varepsilon_i=\mathcal B\varep...原创 2019-10-11 21:07:47 · 1456 阅读 · 0 评论 -
2、线性变换的运算
文章目录线性变换乘积数量乘法注意线性变换乘积AB:\mathcal{AB}:AB: AB(α)=A(B(α))\mathcal{AB}(\alpha)=\mathcal{A}(\mathcal{B}(\alpha))AB(α)=A(B(α))乘积满足的运算:结合律:(AB)C=A(BC)(\mathcal{AB})\mathcal C=\mathcal A(\mathcal{BC})(A...原创 2019-10-11 20:23:30 · 1500 阅读 · 0 评论 -
1、线性变换的定义
文章目录变换定义线性变换举例——投影注意!变换定义线性空间中事物的联系反映为线性空间的映射线性空间VVV到自身的映射称为VVV的一个变换线性变换线性空间VVV的一个变换A\mathcal{A}A称为线性变化,只要满足:对∀α,β∈V,以及∀k∈P\forall\alpha,\beta\in V,以及\forall k\in P∀α,β∈V,以及∀k∈P,有A(α+β)=A(α)...原创 2019-10-11 20:11:54 · 2000 阅读 · 0 评论 -
特征向量和特征值——多项式结论2
文章目录结论①结论②结论①设f(x)=a0+a1x+...+amxmf(x)=a_0+a_1x+...+a_mx^mf(x)=a0+a1x+...+amxm是数域K上的一个多项式λ0\lambda_0λ0是A的一个特征值,α\alphaα是属于λ0\lambda_0λ0的一个特征向量⇒\Rightarrow⇒ f(λ0)是f(A)的一个特征值f(\lambda_0)是f(A)的...原创 2019-08-31 17:30:28 · 1466 阅读 · 0 评论 -
特征向量和特征值及——循环(移位)矩阵结论3
文章目录循环移位矩阵的tzz和tzxl答求循环矩阵啦!答循环移位矩阵的tzz和tzxlP278例11P_{278}例11P278例11求复数域上nnn级循环移位矩阵C=(εn,ε1,...,εn−1)C=(\varepsilon_n,\varepsilon_1,...,\varepsilon_{n-1})C=(εn,ε1,...,εn−1)的全部特征值和特征向量答∣λI−C∣=...原创 2019-08-31 17:40:30 · 4141 阅读 · 0 评论 -
特征向量和特征值的例题及结论1
文章目录结论1~2关于可逆矩阵的结论证明(重要)一道类似题证明这个结论很有意思证明应用解结论1~2幂零矩阵一定有特征值,且它的特征值一定为0幂等矩阵一定有特征值,并且它的特征值是0或1关于可逆矩阵的结论设AAA是nnn级可逆,则若AAA有特征值⇒\Rightarrow⇒特征值≠0\ne0̸=0若λ0\lambda_0λ0是AAA的一个lll重特征根⇒\Rightarrow⇒...原创 2019-08-31 16:37:50 · 7588 阅读 · 0 评论 -
lambda-矩阵介绍+矩阵在初等变换下的标准形
文章目录定义1:秩定义2:可逆可逆的充要条件!证明定义3:λ−\lambda-λ−矩阵的初等变换定义4:等价定理2引理定义1:秩和数字矩阵的定义差不多A(λ)A(\lambda)A(λ)中有一个r阶子式不为0,而所有r+1阶子式为0⇒A(λ)\Rightarrow A(\lambda)⇒A(λ)的秩就为r定义2:可逆n阶矩阵A(λ)A(\lambda)A(λ)称为可逆的,如果存在...原创 2019-10-18 15:53:32 · 6338 阅读 · 0 评论 -
线性变换求值域与核的一道题
文章目录题目jie题目V是复数域上以α1,α2,α3,α4\alpha_1,\alpha_2,\alpha_3,\alpha_4α1,α2,α3,α4为基底的线性空间,A\mathscr{A}A是V上的线性变换{A(αi)=α1i=1,2,3A(α4)=α2\begin{cases}\mathscr{A}(\alpha_i)=\alpha_1&i=1,2,3\\\maths...原创 2019-12-06 10:00:37 · 12695 阅读 · 1 评论 -
高代——关于线性变换基,矩阵,核与值域
文章目录典型题(非常极其以及十分重要!!)第一问第二问(易错)第三问第四问典型题(非常极其以及十分重要!!)设ε1,ε2,ε3,ε4\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4ε1,ε2,ε3,ε4是4维空间VVV的一组基,已知线性变换A\mathscr{A}A在这组基下的矩阵为(1021−121312552−21−2)...原创 2019-11-15 19:18:02 · 7301 阅读 · 0 评论 -
题型——标准形,初等/不变因子,寻找若当标准形
文章目录1.将lambda矩阵化为标准形例1jie2.:求不变因子jie3.求若尔当标准形例3jie1.将lambda矩阵化为标准形方法有二:①初等行列变换:将λ−\lambda-λ−矩阵化成对角形式,一般步骤是:先看有没有1,若有,则将1所在行列均消成0,再将1放到对角线上,然后继续做行列变换②寻找行列式因子⇒\Rightarrow⇒得到不变因子,再按降幂的方法排列不变因子例1...原创 2019-11-05 11:15:30 · 8774 阅读 · 0 评论 -
伴随矩阵的二三性质
文章目录行列式秩证明其他 P201伴随矩阵的定义和A∗A=AA∗=∣A∣IA^*A=AA^*=|A|IA∗A=AA∗=∣A∣I这个性质在可逆矩阵的二三性质中已经有介绍了,这里不多说。这里介绍一下伴随矩阵的行列式和秩的结论。行列式AAA是nnn级矩阵(n≥2n\ge 2n≥2)⇒\Rightarrow⇒ ∣A∗∣=∣A∣n−1|A^*|=|A|^{n-1}∣A∗∣=∣A∣n−1(A∗)∗...原创 2019-08-05 17:09:24 · 3457 阅读 · 1 评论 -
重因式+多项式函数
文章目录重因式定义定理6推论 1推论 2推论 3小妙招:去除多项式中的重因式定理7(余数定理)定理8定理9重因式定义p(x)p(x)p(x)是不可约多项式pk(x)∣f(x)p^k(x)|f(x)pk(x)∣f(x)pk+1∤f(x)p^{k+1}\nmid f(x)pk+1∤f(x)若k=1⇒p是f的单因式k=1\Rightarrow p是f的单因式k=1⇒p是f的单因式若k...原创 2019-09-18 21:05:12 · 1363 阅读 · 0 评论 -
最大公因式+因式分解
文章目录最大公因式定义辗转相除法依据的原理定理2(最大公因式的表示)互素定理3:互素的充要条件定理4证明推论证明不可约多项式定理5因式分解及唯一性定理标准分解式最大公因式定义f(x),g(x)∈P[x],d(x)∈P[x]f(x),g(x)\in P[x],d(x)\in P[x]f(x),g(x)∈P[x],d(x)∈P[x]被称为二者的最大公因式,要满足:①d(x)是f,gd(x)是...原创 2019-09-18 20:39:47 · 3055 阅读 · 0 评论 -
多项式整除
文章目录一元多项式环3.整除带余除法一元多项式环所有系数在数域PPP中的一元多项式全体,称为数域PPP上的一元多项式环,记为P[x]P[x]P[x],PPP称为P[x]P[x]P[x]上的系数域3.整除带余除法对于P[x]P[x]P[x]中的任意两个多项式f(x)f(x)f(x)与g(x)≠0g(x)\ne 0g(x)̸=0一定∃q(x),r(x)∈P[x]\exist q(x),...原创 2019-09-18 19:41:37 · 2086 阅读 · 0 评论 -
综合除法
文章目录大致原理例1解例2解综合除法可以解决多项式对于(x−a)(x-a)(x−a)展开(泰勒级数)或者只是单纯的求多项式除以(x−a)(x-a)(x−a)的商和余式大致原理对于f(x)=anxn+an−1xn−1+...+a1x+a0f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0f(x)=anxn+an−1xn−1+...+a1x+a0除以(x−a...原创 2019-09-17 16:57:27 · 26390 阅读 · 0 评论 -
数域
文章目录定义一个命题证明定义复数集的一个子集KKK若满足:0,1∈K0,1\in K0,1∈Ka,b∈K⇒a±b,ab∈Ka,b\in K\Rightarrow a\pm b,ab\in Ka,b∈K⇒a±b,ab∈Ka,b∈K且b≠0⇒ab∈Ka,b\in K且b\ne 0\Rightarrow \frac ab\in Ka,b∈K且b̸=0⇒ba∈K则称K是一个数域注意...原创 2019-09-15 20:24:11 · 1160 阅读 · 0 评论 -
正定二次型与正定矩阵
文章目录二次型正定的定义半正定/(负)半负定/不定的定义二次型正定充要条件矩阵正定+正定矩阵的定义实对称矩阵正定的充要推论1推论2正定充要条件②半正定充要条件①半正定充要条件②负定充要条件Hesse矩阵延伸:n元函数的Hesse矩阵二次型正定的定义n元实二次型X′AXX'AXX′AX若满足:对RnR^nRn中任意非零列向量α\alphaα都有α′Aα>0\alp...原创 2019-09-15 19:36:52 · 4825 阅读 · 0 评论 -
和AB=BA有关的几道小题
文章目录题1(实对称+AB=BA)证明题2(A,B正定)证明补充题证明题1(实对称+AB=BA)A,BA,BA,B都是n阶实对称矩阵AB=BAAB=BAAB=BA⇒\Rightarrow⇒ ∃正交矩阵T,使得\exist正交矩阵T,使得∃正交矩阵T,使得 T′AT,T′BT都是对角矩阵T'AT,T'BT都是对角矩阵T′AT,T′BT都是对角矩阵证明AAA是n阶实对称,则∃T1\e...原创 2019-09-20 15:12:17 · 1557 阅读 · 0 评论 -
实对称矩阵特征值按大小排序
文章目录题1证明:题2证明:题3证明:题1A是实对称矩阵A所有的特征值按大小排序如下:λ1≥...≥λn\lambda_1\ge...\ge\lambda_nλ1≥...≥λn证明:对∀α∈Rn,且α≠0,都满足\forall\alpha\in R^n,且\alpha\ne0,都满足∀α∈Rn,且α=0,都满足 λn≤α′Aα∣α∣2≤λn\lambda_n\le\frac{\a...原创 2019-09-20 15:37:39 · 2067 阅读 · 0 评论 -
记忆版~(半)正定\负定的充要条件(用各种矩阵表示)
文章目录可逆表示正定可逆实对称表示正定实对称表示半正定正定表示正定半正定表示半正定正定与主子式一些重要的xiao结论列满秩表示正定行满秩表示半正定上三角表示正定可逆表示正定实对称A为正定⇔\Leftrightarrow⇔存在实可逆C使得A=C′CA=C'CA=C′C可逆实对称表示正定实对称A为正定⇔\Leftrightarrow⇔存在可逆实对称C使得A=C2A=C^2A=C2实对称表示半...原创 2019-09-24 19:09:44 · 4712 阅读 · 0 评论 -
证明版~(半)正定\负定的充要条件(用各种矩阵表示)
文章目录可逆表示正定证明可逆实对称表示正定证明实对称表示半正定正定表示正定证明半正定表示半正定正定与主子式证明一些重要的xiao结论列满秩表示正定证明行满秩表示半正定证明上三角表示正定证明可逆表示正定实对称A为正定⇔\Leftrightarrow⇔存在实可逆C使得A=C′CA=C'CA=C′C证明实对称A为正定⇔\Leftrightarrow⇔ A≃IA\simeq IA≃I⇔\Le...原创 2019-09-24 20:28:35 · 9604 阅读 · 0 评论 -
Hadmard不等式及一串铺垫题
文章目录Hadamard不等式辅助1证明辅助2证明辅助3证明辅助4证明辅助5证明补充证明终于打到最后一关的boss了!!证明Hadamard不等式C(cij)C(c_{ij})C(cij)是n阶实矩阵那么∣C∣2≤∏j=1n(c1j2+c2j2+...+cnj2)|C|^2\le\prod\limits_{j=1}^n(c_{1j}^2+c_{2j}^2+...+c_{nj}^2)∣C∣...原创 2019-09-26 19:24:54 · 1009 阅读 · 0 评论 -
线性空间需要满足的八大规则
八大规对∀α,β,γ∈V\forall \alpha,\beta,\gamma\in V∀α,β,γ∈V,若满足:加法规则:①交换:α+β=β+α\alpha+\beta=\beta+\alphaα+β=β+α②结合:(α+β)+γ=α+(β+γ)(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)(α+β)+γ=α+(β+γ)③有零元素000,使得...原创 2019-10-03 17:22:36 · 16481 阅读 · 0 评论 -
基变换and坐标变换
文章目录坐标变换和过渡矩阵过渡矩阵运算规律我发现!坐标变换和过渡矩阵设ε1,ε2,...,εn\varepsilon_1,\varepsilon_2,...,\varepsilon_nε1,ε2,...,εn与ε1′,ε2′,...,εn′\varepsilon_1',\varepsilon_2',...,\varepsilon_n'ε1′,ε2′,...,εn′是n维线性空间V...原创 2019-10-03 17:59:59 · 389 阅读 · 0 评论 -
线性子空间
文章目录线性子空间定义(非)平凡子空间定理3证明线性子空间定义数域P上线性空间VVV的一个非空子集合WWW称为V的一个线性子空间,只要满足:①α∈W,∀k∈P⇒kα∈W\alpha\in W,\forall k\in P\Rightarrow k\alpha\in Wα∈W,∀k∈P⇒kα∈W②α,β∈W⇒α+β∈W\alpha,\beta\in W\Rightarrow \alpha...原创 2019-10-04 17:27:35 · 3049 阅读 · 0 评论 -
子空间的交与(直)和
文章目录子空间的交也是子空间子空间的和子空间的和也是子空间子空间的交与和的结论维数公式证明推论子空间的交也是子空间V1,V2V_1,V_2V1,V2是子空间VVV的子空间那么,V1∩V2V_1\cap V_2V1∩V2也是VVV的子空间子空间的和V1,V2V_1,V_2V1,V2是线性空间VVV的子空间V1+V2V_1+V_2V1+V2是指:所有能表示成α1+α2...原创 2019-10-04 18:12:19 · 6404 阅读 · 4 评论 -
伴随矩阵第二弹
文章目录结论1证明结论2结论3PP_{}P结论1A,B都是数域K上的n级矩阵(n≥2n\ge2n≥2)A∼BA\sim BA∼B 则A∗∼B∗A^*\sim B^*A∗∼B∗证明之前有个结论:若A∼B,则存在一可逆矩阵P,使得A\sim B,则存在一可逆矩阵P,使得A∼B,则存在一可逆矩阵P,使得 P−1AP=BP^{-1}AP=BP−1AP=B而且还满足P∗A∗(P−1)∗=...原创 2019-09-11 15:20:16 · 427 阅读 · 0 评论 -
斜对称矩阵
文章目录啥是 斜对称矩阵结论1结论2证明延伸证明啥是 斜对称矩阵A′=−AA'=-AA′=−A⇒\Rightarrow⇒ 斜对称矩阵对角线元素为0,且aij=−aji,i≠ja_{ij}=-a_{ji},i\ne jaij=−aji,i̸=j结论1实数域上斜对称矩阵的特征多项式在复数域中的根式0或纯虚数结论2A是数域K上的n 级矩阵证明:A是斜对称矩阵⇔\...原创 2019-09-11 14:51:35 · 9577 阅读 · 0 评论 -
一题关于秩的新思考(rank(A_1)与r+s-m)
P115P_{115}P115m×nm×nm×n矩阵AAA的秩是rrrA的∀s行/列组成子矩阵A1A的\forall s行/列组成子矩阵A_1A的∀s行/列组成子矩阵A1 ⇒rank(A1)≥r+s−m\Rightarrow rank(A_1)\ge r+s-m⇒rank(A1)≥r+s−m证明设rank(A1)=lrank(A_1)=lrank(A1)=l以上不等式可以变...原创 2019-09-10 18:50:25 · 412 阅读 · 0 评论