求曲线上的动点到直线的距离的最值

本文详细探讨了如何求解圆、椭圆、抛物线以及函数图像上动点到直线距离的最值问题,通过几何方法、平行线法和参数方程法进行分析,并给出具体实例和解题策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘要】求曲线上的动点到直线的距离的最值问题,这样的曲线常见的有圆,椭圆,双曲线,抛物线,以及函数图像。

Ⅰ:圆上的动点到直线的距离[点线距]的最值

如给定圆\(C:x^2+y^2=4\),和直线\(y=x+4\),求圆上任意一点到直线的距离[点线距]的最大值和最小值。

常用方法:

①几何方法,圆心到直线的距离为\(d\),则点线距的最大值为\(d+r\),最小值为\(d-r\)

992978-20180918161932809-24785950.png

②平行线法,先设与已知直线平行且和圆相切的直线为\(y=x+m\),联立方程组,利用\(\Delta=0\)求得\(m\)的两个值,

则点线距的最小值为线线距中的最小值,其最大值为线线距中的最大值;

③参数方程法[或三角函数法],圆上任意一点坐标\((2cos\theta,2sin\theta)\),利用点到直线的距离公式转化为三角函数求最值;

其中以几何方法最为简单;

Ⅱ:椭圆上的动点到直线的距离[点线距]的最值

如给定椭圆\(C:\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\),和直线\(y=x+4\),求椭圆上任意一点到直线的距离[点线距]的最大值和最小值。

常用方法:

①几何方法,失效;

②平行线法,先设与已知直线平行且和椭圆相切的直线为\(y=x+m\),联立方程组,利用\(\Delta=0\)求得\(m\)的两个值,则点线距的最小值为线线距中的最小值,其最大值为线线距中的最大值;

要实现点在两条曲线上运,可以使用Python的matplotlib库来绘制曲线点。具体步骤如下: 1. 导入所需库: ```python import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation ``` 2. 定义两条曲线点的起始位置: ```python # 定义曲线1 x1 = np.linspace(0, 2*np.pi, 100) y1 = np.sin(x1) # 定义曲线2 x2 = np.linspace(0, 2*np.pi, 100) y2 = np.cos(x2) # 定义点的起始位置 point, = plt.plot([x1[0]], [y1[0]], 'ro') ``` 3. 定义更新点位置的函数: ```python def update_point(num): # 计算当前点在曲线1和曲线2上的位置 x = (1 - num/100) * x1 + num/100 * x2 y = (1 - num/100) * y1 + num/100 * y2 # 更新点位置 point.set_data(x[num], y[num]) return point, ``` 4. 创建画对象: ```python ani = animation.FuncAnimation(fig, update_point, frames=100, interval=50, blit=True) ``` 其中,`fig`是图形对象,`update_point`是更新点位置的函数,`frames`是画的帧数,`interval`是每帧之间的间隔时间,`blit`表示是否只绘制有变化的部分。 5. 显示画: ```python plt.show() ``` 完整代码如下: ```python import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # 定义曲线1 x1 = np.linspace(0, 2*np.pi, 100) y1 = np.sin(x1) # 定义曲线2 x2 = np.linspace(0, 2*np.pi, 100) y2 = np.cos(x2) # 定义点的起始位置 point, = plt.plot([x1[0]], [y1[0]], 'ro') def update_point(num): # 计算当前点在曲线1和曲线2上的位置 x = (1 - num/100) * x1 + num/100 * x2 y = (1 - num/100) * y1 + num/100 * y2 # 更新点位置 point.set_data(x[num], y[num]) return point, fig = plt.figure() ani = animation.FuncAnimation(fig, update_point, frames=100, interval=50, blit=True) plt.show() ``` 执行代码,即可看到点在曲线1和曲线2之间运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值