求曲线上的动点到直线的距离的最值

本文详细探讨了如何求解圆、椭圆、抛物线以及函数图像上动点到直线距离的最值问题,通过几何方法、平行线法和参数方程法进行分析,并给出具体实例和解题策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘要】求曲线上的动点到直线的距离的最值问题,这样的曲线常见的有圆,椭圆,双曲线,抛物线,以及函数图像。

Ⅰ:圆上的动点到直线的距离[点线距]的最值

如给定圆\(C:x^2+y^2=4\),和直线\(y=x+4\),求圆上任意一点到直线的距离[点线距]的最大值和最小值。

常用方法:

①几何方法,圆心到直线的距离为\(d\),则点线距的最大值为\(d+r\),最小值为\(d-r\)

992978-20180918161932809-24785950.png

②平行线法,先设与已知直线平行且和圆相切的直线为\(y=x+m\),联立方程组,利用\(\Delta=0\)求得\(m\)的两个值,

则点线距的最小值为线线距中的最小值,其最大值为线线距中的最大值;

③参数方程法[或三角函数法],圆上任意一点坐标\((2cos\theta,2sin\theta)\),利用点到直线的距离公式转化为三角函数求最值;

其中以几何方法最为简单;

Ⅱ:椭圆上的动点到直线的距离[点线距]的最值

如给定椭圆\(C:\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\),和直线\(y=x+4\),求椭圆上任意一点到直线的距离[点线距]的最大值和最小值。

常用方法:

①几何方法,失效;

②平行线法,先设与已知直线平行且和椭圆相切的直线为\(y=x+m\),联立方程组,利用\(\Delta=0\)求得\(m\)的两个值,则点线距的最小值为线线距中的最小值,其最大值为线线距中的最大值;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值