洛谷 P1313 计算系数 Label:杨辉三角形 多项式计算

本文介绍了一种利用杨辉三角和快速幂运算相结合的方法来解决特定多项式系数的问题。通过输入多项式的参数a、b、k及x、y的指数n、m,计算(by+ax)^k展开后x^n*y^m项的系数,并输出该系数对10007取模的结果。
摘要由CSDN通过智能技术生成

题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

 

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

 

输出格式:

 

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

 

输入输出样例

输入样例#1:
1 1 3 1 2
输出样例#1:
3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题

 

代码

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #define ll long long
 6 using namespace std;
 7 int h[1010][1010],a,b,k,n,m,Max=10007;
 8 ll ans;
 9 
10 ll pow(ll x,ll n,int Max){
11     ll res=1;
12     while(n>0){
13         if(n&1) res=(res*x)%Max;
14         x=(x*x)%Max;
15         n>>=1;
16     }
17     return res%Max;
18 }
19 
20 int main(){
21     scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
22     for(int i=1;i<=1005;i++){
23         h[i][i]=h[i][1]=1;
24     }
25     for(int i=2;i<=1005;i++){
26         for(int j=2;j<=i;j++){
27             h[i][j]=(h[i-1][j]+h[i-1][j-1])%Max;
28         }
29     }
30     ans=h[k+1][m+1];
31     
32     ans=(ans*(pow(a,n,Max)*pow(b,m,Max)))%Max;
33     cout<<ans<<endl;
34     return 0;
35 }

杨辉三角形多项式定理看这里:http://wenku.baidu.com/link?url=c032QL7g165FSQy5GiSPGUViuY3Xc1JuoQ5fI0HQDt0X_OjZ6jlWD2iEt5vJILw6NzD0ribDTVCC96de7HInt5dj53aQJIJH-caUUEh6aai

 

转载:

杨辉三角形与快速幂的结合运用,具体就是

用杨辉三角算出(x+y)^k中某项的系数再乘以各自a^k乘以b^k的数积。

唯一的注意点是杨辉三角形的层数是k+1,数组要多开一层

 

 

转载于:https://www.cnblogs.com/radiumlrb/p/5817641.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值