注:杨辉三角是杨辉想的,图是我自己的分析
图解:
n=1时,(a+b)的系数是1,1
n=2时,(a+b)^2的系数是1,2,1
n=10时,如下程序结果。
代码:
#include <iostream>
using namespace std;
void coefficient(const int n){
int i,j;
int A[n+1][n+1];//加1的目的,如:当n=7,取的是杨辉三角的第8行
/*第一个for代表有多少行
*第二个for代表每一行多少有效列
*/
for(i=0;i<=n;i++)
for(j=0;j<=i;j++){
if(j==0||i==j)
A[i][j]=1;
else
A[i][j]=A[i-1][j-1]+A[i-1][j];
}
//输出n阶的系数
cout<<"(a+b)的"<<n<<"阶各系数分别为:"<<endl;
for(j=0,i=n;j<=n;j++){
cout<<A[i][j]<<" ";
}
}
int main() {
int k=1;
cout<<"请输入阶数:";
cin>>k;
coefficient(k);
return 0;
}
结果: