杨辉三角

打印杨辉三角

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
找图形规律:
1.每一列的第一个和最后一列都是1(行列相等)
2.每一行,列数,和当前的行数相同
3.a [row] [col] = a[row-1] [col-1]+a[row-1][col]

#include <stdio.h>
#include <stdlib.h>

int main(){
	int a[10][10] = { 0 };
	int row, col;
	for (row = 1; row <=5; row++){
		for (col = 1; col <= row; col++){
			if (col == 1 || col == row){
				a[row][col] = 1;
			}
			else{
				a[row][col] = a[row - 1][col - 1] + a[row - 1][col];
			}
			printf(" %d ", a[row][col]);
		}
		printf("\n");
	}


	system("pause");
	return 0;
}
#include <stdio.h>
#include <stdlib.h>

void PrintYanghui(int N){
	int a[10][10] = { 0 };
	int row, col;
	for (row = 1; row <=N; row++){
		for (col = 1; col <= row; col++){
			if (col == 1 || col == row){
				a[row][col] = 1;
			}
			else{
				a[row][col] = a[row - 1][col - 1] + a[row - 1][col];
			}
			printf(" %d ", a[row][col]);
		}
		printf("\n");
	}
}

int main(){

	PrintYanghui(5);
	system("pause");
	return 0;
}

运行结果:
在这里插入图片描述
这个方法是首先个第一行第一列的赋值1,后面的依次进行相加即可,假如a[0][1]对于杨辉三角来说没有那么计算时按照0,进行相加即可

#include <stdio.h>
#include <stdlib.h>

void Print(int arr[][20],int n) {  //二维数组
	for (int i = 0; i < n; i++) {
		for (int j = 0; j <= i; j++) {
			printf("%d ", arr[i][j]);
		}
		printf("\n");
	}
}

void Yanghui(int n) {
	int arr[20][20] = { 0 };
	int i, j;
	for (int i = 0; i < n;i++) {
		arr[i][0] = 1;
		for (int j = 1; j <= i; j++) {
			arr[i][j] = arr[i-1][j] + arr[i-1][j-1];
		}
	}
	Print(arr, n);
}
int main () {


	Yanghui(10);

    system ("pause");
    return 0;
}

杨辉三角的应用

1.杨辉三角与多项式求系数(a + b)^n

(a+b) ^ 1 = a + b
(a+b) ^ 2 = a ^ 2 + 2 ab + b ^ 2
(a+b) ^ 3 = a ^ 3 + 3 * a ^ 2 b + 3 * b ^ 2 * a + b ^ 3
(a+b) ^ 4 = a ^ 4 + 4 * a ^ 3
b + 6 * a ^ 2 * b ^ 2 + 4 * b ^ 3 + b ^ 4
.
.
依次类推能够很明显的得到对应次方的不同系数不用,而系数恰好是杨辉三角的行数所对应的系数,因此能够将其转化为杨辉三角进行计算(杨辉三角的行数等于多项式的次方)


#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>

void Print(int arr[][20], int n) {  //二维数组
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= i; j++) {
			printf("%d ", arr[i][j]);
		}
		printf("\n");
	}
}

void PrintYanghui(int n) {
	int arr[20][20] = { 0 };
	int i, j;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= i; j++) {
			if (j == 1 && j == i) {
				arr[i][j] = 1;
			}
			else {
				arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1];
			}
		}
	}
	Print(arr, n);
}

int main() {
	int n = 0;
	printf("请输入表达式[(a + b^n]n次方的的系数: ");
	scanf("%d",&n);
	PrintYanghui(n);
	system("pause");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值