干货来袭丨资产可用性真的是终极目标吗?

谈到工业 4.0,最常引用的例子是资产绩效管理。似乎是突然之间,关键的制造资产仿佛都配备了传感器技术,能够收集的数据量之大、数据种类之多都是前所未有的。

 

严格追求资产绩效被纳入到预测性维护的类别下。对制造业来说,工厂里的每一个生产设备都是一笔重要的资产。因此制造商们需意识到,设备在规划的时间里需要进行统一的更换,升级,以最大程度的避免大故障发生的风险。

 

【QAD小百科】

所谓预测性维护(Predictive Maintenance,简称PdM),即在机器运行时,对它的主要(或需要)部位进行定期(或连续)的状态监测和故障诊断,判定装备所处的状态,预测装备状态未来的发展趋势,依据装备的状态发展趋势和可能的故障模式,预先制定预测性维修计划,确定机器应该修理的时间、内容、方式和必需的技术和物资支持。

在制造业中,对生产线机器和设备的持续维护是一项重大开支,这对任何依赖于此的生产操作都有着至关重要的影响。此外,研究表明,计划外停机每年给制造商造成的损失估计为500亿美元,其中,资产故障导致了42%的计划外停机。

出于这个原因,预测性维护已经成为制造商必不可少的解决方案,他们可以从预测零件、机器或系统的下一次故障中获益良多。

 

的确,提高资产绩效确实是一项崇高而有价值的追求。但是,务必要承认的是资产可用性绝不是终极目标。额外的关键资产可用时间能否发挥作用取决于利用这些额外时间都做了些什么。

 

47c490c5eec095fe397cc2ec6e3e605c1819f231

为避免加班或避免额外资产进行资本投资的负担,额外的产能可立即转化为额外的产量至关重要。这对大批量生产的食品制造商来说是一个巨大的优势。然而,大多数制造商缺乏专用设备,并且过于注重调整重复过程。产品种类和定制要求促使设备必须具备灵活性和可调整性。只有订单得到妥善处理,让相应的客户满意,产能增加才是实实在在的优势。

 

针对使需求与生产相匹配,或者在有冲突的组织目标之间进行协作等遗留问题,就算有额外的产能也无济于事。在最糟糕的情况下,额外的产能有可能会导致生产出更多不需要的“错误”产品库存。

因此,对于许多制造商而言,对资产绩效的深入了解必须与目前的需求和供应链计划工具相适应。如果受到了传统电子表格规划的限制,资产绩效也并不会带来意外效益。为此需要现代需求和供应管理工具才能发挥资产绩效监测和预测性维护所带来的基本优势。

 

此刻,如果您对行业需求以及如何匹配供应链管理工具还很陌生,欢迎加入QAD,我们愿与您一起共同应对工业4.0带来的机遇和挑战
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值