联系方式
- Author: sunhailin-Leo
- E-mail: 379978424@qq.com
- 代码: 仓库地址 -> github.com/sunhailin-L…
简介
-
第一篇文章传送门: Python爬取中国银行外汇牌价(爬虫 + PyFlux简单预测分析)--(一)
-
如果数据还没获取到的话请移步看第一篇文章(本篇文章默认数据已存储在数据库中)
步入正题
- 上一篇文章末尾部分在讲使用Pyflux这个库对数据进行分析预测
- 总结两个方面:
- 优点:
- Pyflux模型文档"一针见血"(建立在对时序分析有一定基础的人, 能看懂部分核心公式)
- 缺点:
- 提供少量的数据分析API, 不像statsmodels提供了例如残差分析等方法进行模型验证调优的方法
- 优点:
- 本文将使用statsmodels对此前的数据进行分析。
数据前期准备
df['查询时间'] = df['查询时间'].apply(lambda x: x[:-9])
df['查询时间'] = pd.to_datetime(df['查询时间'], format="%Y-%m-%d")
df = df.groupby('查询时间')['现汇卖出价'].mean()
df = df.to_frame()
print(df)
复制代码
数据平稳性校验
- 直接上代码(差分画图看数据平稳性)
- 一共测试了1阶和2阶(不建议使用高阶数据, 容易数据造成破坏)
# 差分图
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(111)
# 里面的1代表了差分阶数
diff1 = df.diff(1)
diff1.plot(ax=ax1)
plt.show()
# fig.savef