计算物体姿态旋转_基于单位四元数的姿态插补(Matlab)

本文探讨了在解决机器人姿态插补中出现的奇异性问题,通过引入单位四元数来替代RPY角法,有效地避免了解算奇异现象。文中提到单位四元数在姿态表达上的优势,如运算量小、利于插值,并对比了与欧拉角法的差异,指出单位四元数更适合实时性和刚体姿态变换描述。
摘要由CSDN通过智能技术生成

495aa5f3dbdd0ebcdf984bee8ce58bc2.png

在我前面的博文基于抛物线过渡(梯形加减速)的空间直线插补算法与空间圆弧插补算法、五自由度diy机械臂空间插补算法(直线和圆弧)简单测试中出现姿态奇异性问题,这主要是由于我选用的RPY角姿态表达方法在β角等于±90°时姿态解算会出现奇异现象,剩下两个自由度会退化,α角和γ角会变成一个角。为解决这个问题,我换用单位四元数来对姿态进行表达。

结果显示能够解决奇异性问题:

2fd8600dfe68aa82102dcf456ffbc1be.gif

机器人姿态表达

机器人姿态表达形式主要有旋转矩阵法、欧拉角法、RPY角法、单位四元数法等。

旋转矩阵法可以通过累乘表示坐标系的连续变化,能够清晰地表示当前坐标系相对于基座标系的姿态,是常用的姿态表达方式。但是由于旋转矩阵法需要9个元素才能描述姿态,在程序处理中需要使用大量内存空间且计算复杂,所以旋转矩阵法不适合应用与实时性较高的姿态控制和运动插补控制中。

欧拉角法和RPY角法都能非常简单地描述物体姿态。机器人末端执行器的示教姿态通常以欧拉角的形式给出,RPY通常表示船舶在航行中的姿态变化,都存在奇异性问题。

单位四元数在表达姿态时具有运算量小、便于

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值