背景
最近在学习Puppeteer进行自动化操作,另一方面为了防止上班时间被打扰,是时候爬点歌单在上班的时候,用来抵抗外界的干扰了。
地址
项目完整代码地址:github.com/BingKui/WeC…
工具
- NodeJS:基本环境 版本 >=
v10.*.*
- Puppeteer:Google官方出品的无头Chrome node库
- MongoDB:用来存储爬取到的数据
- mongoose:node 中链接、操作 MongoDB 的驱动库
- dayjs:时间处理库
- node-schedule:node 定时任务库,线上部署用到,本地本地没有用到
- pm2:node 进程管理工具,线上部署使用
目标
- 爬取网易云音乐播放量超过 1000W 的歌单
- 爬取 QQ 音乐播放量超过 1000W 的歌单
- 把爬取的歌单保存到数据库
- 创建定时任务,线上部署,每天定时爬取、保存
准备工作
- 保证本地安装了 MongoDB 数据库,并能正常连接,具体请自行百度。
- 安装所需的库文件
- 编写数据库连接文件
安装库文件注意
由于 Puppeteer 会下载一个 Chrome 浏览器到本地,所以可能较慢,可以使用 cnpm
或者切换为 淘宝镜像。
数据库连接文件
const mongoose = require('mongoose');
// 数据库地址
const mongoDB = 'mongodb://127.0.0.1:27017/wechat';
// 链接数据库
mongoose.connect(mongoDB);
// 监听数据库事件
const db = mongoose.connection;
// 连接异常
db.on('error', function (err) {
console.log('Mongoose connection error: ' + err);
});
// 连接断开
db.on('disconnected', function () {
console.log('Mongoose connection disconnected');
});
// 连接成功
db.on('connected', function () {
console.log('Mongoose connection open to ' + mongoDB);
});
复制代码
爬取网易云音乐歌单
创建浏览器对象
首先我们创建一个无头的浏览器对象。
const browser = await puppeteer.launch({timeout: 300000, headless: true, args: ['--no-sandbox']});
复制代码
具体参数含义请点解这里查看。
说明:args 参数为可选项,以上参数是为了兼容 CentOS ,添加的参数
打开页面
打开地址:https://music.163.com/#/discover/playlist
。
let url = 'https://music.163.com/#/discover/playlist';
// 创建
const page = await browser.newPage();
// 跳转到歌单页面
await page.goto(url);
复制代码
分析页面结构
网易云音乐的歌单页使用了 iframe
嵌套的方式,所以我们要在页面中获取到 iframe
中的内容,并提取我们需要的信息。
// 获取歌单的iframe
let iframe = await page.frames().find(f => f.name() === 'contentFrame');
复制代码
获取歌单数据的元素并处理
Puppeteer 提供了可以在 iframe
中执行js的方法,我们可以直接执行,通过原生js来获取想要的数据。
// 获取歌单
const result = await iframe.evaluate(() => {
// 获取所有元素
const elements = document.querySelectorAll('#m-pl-container > li');
// 创建数组,存放获取的数据
let res = [];
for (let ele of elements) {
let image = ele.querySelector('.j-flag').getAttribute('src');
let name = ele.querySelector('.tit').innerText;
let count = ele.querySelector('.nb').innerText;
let author = ele.querySelector('.nm').innerText;
let address = 'https://music.163.com/#' + ele.querySelector('.msk').getAttribute('href');
const flag = (count.indexOf('万') > -1) && (parseInt(count.split('万')[0]) > 1000);
if (flag) {
res.push({
image,
name,
count,
author,
address,
from: 'netease',
});
}
}
// 返回数据
return res;
});
复制代码
循环爬取所有热门歌单
通过分析页面可以看到,歌单一共 35 页,并且每页有 35 条数据,并且分页是通过 url 参数区分的,所以我们可以简单暴力一点,写个循环搞定(主要还是懒)。
高级操作:可以通过 Puppeteer 的方法,获取页面,然后点击下一页,判断是否能够点击下一页来确定是否存在下一页。需要了解的可以自行研究。
为了方便操作,我们把获取每页数据封装成一个方法:getOnePageData
。
const getOnePageData = async (page, pageNumber) => {
const url = `https://y.qq.com/portal/playlist.html#t3=${pageNumber}&`;
// 跳转到页面
await page.goto(url);
await page.setViewport({
width: 1300,
height: 5227,
});
// 等待两秒,加载图片
await page.waitFor(2000);
// 获取歌单
const result = await page.evaluate(() => {
// 此处与上方方法一样,省略
...
});
return result;
}
复制代码
然后循环获取数据。
// 定于数组存储数据
let musicPlayList = [];
const page = await browser.newPage();
for (let i = 0; i < 1191; i += 35) {
const item = await getOnePageData(page, i);
console.log(`获取到数据${item.length}条。`);
musicPlayList = musicPlayList.concat(item);
}
复制代码
保存数据到 MongoDB 数据库
定义数据模型。
// models/music.js
const mongoose = require('mongoose');
const Schema = mongoose.Schema;
const MusicSchema = new Schema({
image: String,
name: String,
count: String,
author: String,
address: String,
from: String,
date: Date,
show: Boolean, // 是否展示
});
const MusicModel = mongoose.model('playlist', MusicSchema);
module.exports = MusicModel;
复制代码
封装基本的添加方法。
// server/music.js
const MusicModel = require('../models/music.js');
const save = (item) => {
findBuName(item.name, (obj) => {
if (obj) {
console.log('已经保存,数据');
obj.remove();
}
const saveObject = new MusicModel(item);
saveObject.save((err) => {
if (err) return handleError(err);
});
});
}
const findBuName = (name, callback) => {
MusicModel.findOne({name}, (err, item) => {
if (err) {
callback && callback(false);
}
callback && callback(item);
});
};
module.exports = {
save,
};
复制代码
由于爬取的数据存在重复的数据,为了减少不必要的资源浪费,保存前先进行数据的去重。
// 保存之前去重
let hash = {};
musicPlayList = musicPlayList.reduce((item, next) => {
hash[next.address] ? '' : hash[next.address] = true && item.push(next);
return item
}, []);
复制代码
保存数据到 MongoDB 数据库。
const MusicServer = require('../server/music.js');
// 保存数据
for (let i = 0; i < musicPlayList.length; i++) {
const item = musicPlayList[i];
item.date = dayjs().format('YYYY-MM-DD HH:mm:ss');
item.show = true;
MusicServer.save(item);
}
复制代码
最后关闭浏览器
最后别忘了关闭开始的时候创建的浏览器。
browser.close();
复制代码
到这里,爬取网易云音乐的精品歌单已经完成了。接下来开始爬取 QQ 音乐。
爬取 QQ 音乐精品歌单
由于爬取方式基本一样,下面只介绍不同的地方。
分析页面结构
分析页面,QQ 音乐,没有采用和网易云音乐一样的 iframe
方式,这样爬取更加简单。
获取歌单数据的元素并处理
可以通过在页面上执行方法就能够爬取到我们需要的数据。
// 获取歌单
const result = await page.evaluate(() => {
const elements = document.querySelectorAll('#playlist_box > li');
let res = [];
for (let ele of elements) {
const _n = ele.querySelector('.js_playlist');
let image = 'https:' + ele.querySelector('.playlist__pic').getAttribute('src');
let name = _n.getAttribute('title');
let count = ele.querySelector('.playlist__other').innerText.split(':')[1].replace(/\s+/g, '');
let author = ele.querySelector('.playlist__author').innerText.replace(/\s+/g, '');
let address = `https://y.qq.com/n/yqq/playsquare/${_n.getAttribute('data-disstid')}.html#stat=${_n.getAttribute('data-stat')}`;
const flag = (count.indexOf('万') > -1) && (parseInt(count.split('万')[0]) > 1000);
if (flag) {
res.push({
image,
name,
count,
author,
address,
from: 'qq'
});
}
}
return res;
});
复制代码
循环爬取数据
由于 QQ 音乐采取的分页方式和网易云音乐一样,所有我们还使用相同的方法,暴力爬取(可见我是有多懒~~)。
找到页面中一共有多少页歌单,然后写个像下面的循环。
// 定于数组存储数据
let musicPlayList = [];
const page = await browser.newPage();
// 爬取是总歌单也为 120 页
for (let i = 1; i < 120; i++) {
const item = await getOnePageData(page, i);
console.log(`获取到数据${item.length}条。`);
musicPlayList = musicPlayList.concat(item);
}
复制代码
然后像上边一样,保存进数据库就可以了。
定时任务
由于每天歌单都会有大量的播放量,不断的更新,因此写个定时任务,每天定时爬取更新数据才是稳妥的方法,能够保证我们的数据最新。
封装爬取方法
把爬取方法封装成模块方法,然后在固定的时候调用执行爬虫。
// qq.js
const QQMusic = async () => {
const browser = await puppeteer.launch({timeout: 300000, headless: true, args: ['--no-sandbox']});
// 定于数组存储数据
let musicPlayList = [];
const page = await browser.newPage();
for (let i = 1; i < 120; i++) {
const item = await getOnePageData(page, i);
console.log(`获取到数据${item.length}条。`);
musicPlayList = musicPlayList.concat(item);
}
// 保存之前去重
let hash = {};
musicPlayList = musicPlayList.reduce((item, next) => {
hash[next.address] ? '' : hash[next.address] = true && item.push(next);
return item
}, []);
MusicServer.updateAllHide(() => {
// 保存数据
for (let i = 0; i < musicPlayList.length; i++) {
const item = musicPlayList[i];
item.date = dayjs().format('YYYY-MM-DD HH:mm:ss');
item.show = true;
MusicServer.save(item);
}
}, { from: 'qq' });
await browser.close();
};
module.exports = QQMusic;
// netease.js
const NeteaseMusic = async () => {
const browser = await puppeteer.launch({timeout: 300000, headless: true, args: ['--no-sandbox']});
// 定于数组存储数据
let musicPlayList = [];
const page = await browser.newPage();
for (let i = 0; i < 1191; i += 35) {
const item = await getOnePageData(page, i);
console.log(`获取到数据${item.length}条。`);
musicPlayList = musicPlayList.concat(item);
}
// 保存之前去重
let hash = {};
musicPlayList = musicPlayList.reduce((item, next) => {
hash[next.address] ? '' : hash[next.address] = true && item.push(next);
return item
}, []);
MusicServer.updateAllHide(() => {
// 保存数据
for (let i = 0; i < musicPlayList.length; i++) {
const item = musicPlayList[i];
item.date = dayjs().format('YYYY-MM-DD HH:mm:ss');
item.show = true;
MusicServer.save(item);
}
}, { from: 'netease' });
await browser.close();
};
module.exports = NeteaseMusic;
复制代码
编写定时器
应用 node-schedule
模块,我们能够简单的创建定时任务。
// 创建爬取歌单定时任务
const qqPlayList = () => {
TimeSchedule.scheduleJob('0 5 0 * * *', async () => {
await QQMusic();
});
}
const neteasePlayList = () => {
TimeSchedule.scheduleJob('0 50 0 * * *', async () => {
await NeteaseMusic();
});
}
const scheduleList = () => {
qqPlayList();
neteasePlayList();
};
scheduleList();
复制代码
注意两个爬虫之间的时间间隔,尽量大一些,方式同时两个爬虫都运行,造成服务器的过大压力(土豪机,请随意~~~)。
线上部署
使用 pm2
我们可以方便的管理我们的 NodeJS 服务。
安装 pm2
npm install -g pm2
复制代码
使用 pm2
启动我们的服务。
pm2 start index.js
复制代码
更多相关内容请查阅这里。
预告
接下来就是使用爬到的数据生成图片了,先来两张,看看效果。敬请期待!!!
2018-08-03补充:
图片生成项目已经完成,可以查看:拿着爬虫数据,搞事情啊!!